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ABSTRACT

values are assigned to the targets and the objeciive is to assign weapons to
irgets so as to minimize the total expected value of the surviving targets

#fter all weapons have been fired., Im the Asset-Based problem, corresponding

to preferential defense, we assume that each target is aimed to an asset and,

if not intercepted, destroys it with some given probability. Values are assigned

to each asset and the objective is to assign weapons to targets so as to maximize

the total expected value of fhe surviving assets.

We will present amalytical results for simple cases of the Dynamic Target-Based
problem as well as asymptotic results as the number of targets goes to infinity.
A sub-ootimal algorithm for the Static Asset-Based problem together with an
analyticszl bound on the optimal value will also be provided. A sub-optimal algo-
rithm for the Dynamic Asset-Based probiem will be presented together with a
computational bound on the osptimal value. Several numerical and sensitivity analysis
results will be given. Generally, under suitable assumptions, we show that
dynamic strategies can approximately double the defense effectiveness as compared
to thelr sgtatic counterparts.
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j ABSTRACT

We consider a cless of dynamic resource allocation problems a specific example of which

! is the Weapon-Target Assignment problem. This problem is concernes with the optimal
| assignment of resources in a military engagement. These problems are, in general, NP-
i Complete, so our aim is to provide insight into the problem and its solution. We will
: provide analytical results for simple cases of the problem. We will also provide sub-optimal
! algorithms, together with bounds on the objective function, under certain assumptions.

The battle scenzario of the military engagement beiug modeled is as follows. 1 ae offense
< launches a number of weapons (the targets) which are aimed at valuable assets of the defense.
The defense has a number of defensive weapons each of which can engage at most one
N target. The outcome of such an engagement is stochastic. In the static scenario all weapons
; are fired simultaneously. In the dynamic scenario some weapons are assigned and fired

and the outcomes of these engagements are observed before further assignments are made.

Two objective functions will be considered. In the Target-Pased problem, corresponding
‘ to weighted subtractive defense, values are assigned to the targets and the objective is to
assign wcapons to targets so as to ininimize the total expected value of the surviving targeis
after all weapons have been fired. In the Asset-Based problem, corresponding to preferential
defense, we assume that each target is aimed at an asset and, if not intercepted, destroys it
with some given probability. Values are assigned to earh asset and the objective is to assign
weapons to targets so as to maximize the total expected value of the surviving assets.

We will present analytical results for simple cases of the Dynamic Target-Based problem
as well as asymptotic results as the number of targets goes to infinity. A sub-optimal algo-
K rithm for the Static Asset-Based problem together with an analytical bound on the optimal
\ value will also be provided. A sub-optimal algorithm for th.: Dynamic Asset-Based prob-
lem will be presented together with a computational bound on the optimal value, Several
numerical and sensitivity analysis results will be given. Generally, under suitable assump-
tions, we show that dynamic strategies can approximately double the defense effectiveness
as compared to their static counterparts.
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Chapter 1

Introduction

A resource allocation problem is one in which a set of resources must be allocated to a
set of utilities so as to optimize some given criterion. Some examples of resource allocation
problems include the allocation of personnel to jobs (e.g. the assignment of nurses to shifts),
the allocation of machines to tasks (e.g. in manufacturing) and the assignment of weapons to
targets in a military conflict. These problems can be stated as mathematical optimization
problems aad solved. The weapon to target assignment problem, the main focus of this
thesis, will be discussed in detail in the next section.

The class of problems we will consid2r has certain basic properties which restrict the
solution metheds that can be used. Resources can only be assigned in integral quantities.
Problems with this property are called Integer Programminy; problems. Note that under
this restriction the number of feasible solutions is finite. However, we will be concerned
with Large-Scale problems. For these problems the number of feasible solutions is so large
that complete enumeration and evaluation of each feasible solution is an impractical option.

Another property of the class of problems to be considered is that the resources wiil
be assumed to be error prone. In other words, the action of a resource on a utility has a
stochastic outcome. With gome given probability the resource will have no effect nn the
utility. Because of this, the objective to be optimized will be the expected value of some
perforr ince measure,

We will also be looking at problems in which resources are assigned in time stages. In

13




CHAPTER 1. INTRODUCTION 14

each stage some of the available resources will be assigned to utilities. The effect of these
resources on the utilities will be observed before the assignments in the following stage are
made. Note that these observations are useful because of the failure prone nature of the
resources. If the resources were not failure prone then the outcomes would be deterministic
and can be determined in advance. Resources will also be assumed to be non-renewable so
that once one is used it cannot be assigned in a later stage.

Most of the resource allocation problems that have been studied in the literature have
a linear objective function. In other words the benefit of each utility increases linearly with
the number of resources assigned to it. The resource allocation models in this thesis all
have nonlinear objectives. One of these objective functions will be convex. The other will
be neither convex nor concave.

The issues which arise in solving the problems with these properties can best be discussed
if we look at a specific class of problems. In the next section we will describe a motivating
example for our research, the weapon to target assignment problem. Throughout the thesis

we will use this example to illustrate our resuls.
1.1 Motivating Example

In this section we will describe the weapon to target allocation problem. This problem,
which is used to model the defense of assets in a military conflict, can be described as
follows. The offense {the enemy) launches a number of offensive weapons which are aimed
at valuable assets of the defense. Since these weapons will be the targets of the defense’s
weapons, henceforth we will call them targets. Each of these targets is aimed at exactly one
of the defense’s assets and, if it is not intercepted, it destroys the asset with some lethality
probability. We will assume that the impact of a target on an asset is independent of all
other targets and assets. The defense has a number of defensive weapons with which to
engage these incoming targets. The engagement of a a target by a weapon will be modeled

as 3 stochastic event. A probability, called a kill probability, will be assigned to each

weapon-target pair. This will be the probability that the weapon destroys the target if it is
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CHAPTER 1. INTRODUCTION 15

assigned to it. We will assume that the engagement of & weapon-target pair is independent
of all other weapons and targets., Note that a particular target may be engaged by more
than one weapon in a particular stage (Salvo attacks).!

Two different objectives of the defense will be considered. In the Target-Based version
of the probiem, values will be assigned to the incoming offensive weapons and the objective
is to assign defensive weapons to these targets so as to minimize the expected total value of
the targets which survive after all engagements. Target-Based problems correspond to what
is called weighted subtractive defense. In the Asset-Based version of the problem, values
are assigned to the defended assets and the objective of the defense is to assign weapons to
targets so as to maximize the expected total value of the assets which survive the offense’s
attack. Asset-Based problems lead to preferential defense tactics. Onc can show that the
Target-Based version of the problem is a special case of the Asset-Based problem in which
exactly one target is aimed at each of the assets. If the value of the asset is assigned to
the target aimed for it, then the corresponding Target-Based problem is equivalent to the
Asset-Based one.

In the static versions of the Target-Based and Asset-Based problems we will assume that
all weapons are assigned and fired simultaneously. Damage assessment is made after all
weapon-target engagements. In the case of the Target-Based problem this is the assessment
of the set of surviving targets while in the Asset-Based problem it is the assessment of the
set of destroyed assets. We will refer to these as the Static Target-Based Weapon-Target
Allocation Problem and the Static Asset-Based Weapon-Torget Allecation Problem.

The major focus of this thesis is the analysis of the dynamic versions of the Turget-Based
and Asset-Based problems. In the dynamic problem, weapons are allocated in stages with
the assumption that the outconies (i.e. survival or destruction of each target ) of the weapon-
target engagements of the previous stage are observed (perfectly) before assignments for

the present stage are made. We will assume that each weapon can be used only once.

'The weapon-target allocation problem is but one of tke many problems that need to be addressed in
the field of Command and Control (C?) theory. The perspectives paper by Athans [1] presents some of the
other basic problems in the theory of C? systcms.
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Note that, in practice, it is not possible to observe perfectly the outcome of each weapon-
target engagement. This is due to the fact that there will only be a limited number of
kill assessment sensors. Furthermore these sensors will be imperfect. Also note that the
problem does not contain any information concerning the geometries of the weapon-target
engagements. In practice it is possible for some of these weapons to incapacitate more than
one target depending on the geometry of intercept. Since information is being fed back in
the dynamic model one would expect that it will have a better performance than the static
one. The dynamic versions of the Target-based and Asset-based problems will be called the
Dynamic Target-Based Weapon-Target Allocation Problem and the Dynamic Asset-based
Weapon- Targst Allocation Problem respectively.

One may ask why consider the Targ:t-Based problem if it is a special case of the Asset-
Based problem. The reason is that the Asset-Based problem requires more information
{the targeted defense assets) for its formulation than the Target-Based problem. If this
information is available, then the Asset-Based formulation is more appropriate. However,
if it is not available, then the defense has to use the Target-Based formulation.

Target-Based nbjectives lead to subtractive defense strategies. In other words the defense
tries to kill as many of the most lethal targets as possible, or at least the most valuable
ones. Un the other hand Asset-Based objectives lead to preferential defense strategies. In
such strategies the defense decides which of its assets should be saved and concentrates
all of its weapons on saving these assets. In order to do this however, some of the assets
must be sacrificed (i.e left completely undefended). Note that by directing multiple targets
at an asset, the offense is in effect trying to make a subtractive defense useless. This is
because i a subtractive defense it is likely that at least one of the targets aimed at an
asset will | et through, and that the asset will almost surely be destroyed. On the other
hand, a preferential defense requires much more information because the defense has to
know the point of impact of each target. If this information is not available, then the best
that the defense can do is to use a subtractive defense. Therefore an understanding of both

the Target-Based and Asset-Based problems is needed in order to produce the best defense

*
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. possible.

D oe In the early stages of an attack, the defense may have very limited knowledge of the
| trajectories of the targets. It assigns values to the targets based on factors such as target
type, probable point of impact, etc. It then assigns weapons to targets with the objective
of minimizing the total expected value of the surviving targets after all weapon-target

engagements.
In the later stages of the attack the defense may be able to predict the impact of the
N targets with high probability. These points of impact will be the assets of the defense which
will consist of military installations, population centers, Command and Control (C?) nodes,
} weapon farms, harbors, etc. In order to model the accuracy and reliability of the targets,
' we will include a parameter called a lethality probability for each target. The lethality
probability of a target-asset pair is the probability that the target destroys the asset to
which it is aimed if it is not engaged by any of the defense’s weapons. This probability
i will depend on the accuracy of the target as well as the nature (i.e. hardness) of the asset.
a Since the lethality probabilities of the targets will typically be close to nnity, the only way
. to effectively save an asset is to destroy all of the tucgets aimed for it. Therefore, for this
i situation a more appropriate objective is as follows. Assign values to each of the assets and
assign weapons to targets so as to maximize the total expected value of the surviving assets
after all weapon-target engagements and after all target impacts. Note that different assets
will have inherently different values. The value of an asset will depend on the importance
of the asset to the defense. In order to save a particular asset, all of the targets aimed for
the asset must be engaged, otherwise the asset will be destroyed by the targets which are

i not engaged.
The efficient solution of the Weapon-Target assignment problem is of great interest to
the military. The reason for this is that, in an engagement with the enemy, the problem
¢ must be solved in real time. The enormous combinatorial complexity of the problem implies
that, even with the supercomputers available today, optimal solutions cannot be obtained in

real-time. One must therefore develop good heuristics for solving the problem. To provide
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good heuristics one must have a thorough understanding of the properties of the problem
and its solution. Our intent is to provide properties which will be of use to those who need

to provide heuristics.

The main properties of the weapon-target allocation problems can be summarized as

folluws:

NP-Complete: Simple versions of the Target-Based problem have been shown to be NP-
Complete [2]. This basically means that there are no efficient methods for finding the
optimal solution?; one must essentially resort to complete enumeration of all possible
allocations. This is an important property since it implies that one should look at even
simpler versions to gair insight. This insight can then be used to provide heuristics
for the more general problem. Note that more general versions, e.g. the Asset-Based

problem, will also be NP -Complete.

Discrete: The feasible solutions of these prolilems are restricted to be integral since only
an integral number of weapons cau be assigned to a target. Integer programming

problems are, in general, difficult to solve.

Dynamic: In the case of the dynamic problem one must decide when and to which of the
targets each weapon must be assigned. The number of possible allocations therefore
grows (exponentially) with the number of time periods. This increases the compu-
tational complexity of the problem. However, as we shall see, this “look-shoot-look-

ghoot...” type of strategy can significantly improve defensive effectiveness.

Nonlinear: Ag we have mentioned before, the objective function of the problems are non-
linear. In some versions it is convex, while in the more general version it is neither

COnVEX Nor concave.

Stochastic: The problems to be considered are stochastic in nature. The task of evaluating

the value of an assignmert grows with the number of possible outcomes. In the

*See Lewis and Papadimitriou [3] for the definiticn of an NP-Complete problem.
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dynamic version of the problem the number of outcomes grows exponentially with
the number of time periods. Therefore, for large-scale problems, the task of simply
evaluating the value of an assignment may not be possible in practice. This increases

the difficulty of the problem since approximations must be used.

Large-Scale: The main application of the problems to be considered is that of military
defense. For such problems the number of weapons, assets, and targets is enormous.

This implies that enumeration techniques are impractical.

These properties of the problem rule out any hope of obtaining efficient optimal algorithms.
The purpose of this thesis is therefore to deduce properties of the problem as well as its
solution which will be useful in providing good heuristics. Wherever it is possible, we will
provide rigorous arguments. Wherever it is appropriate we will provide simple examplecs

and computational results.
1.2 Literature Survey

The Weapon-Target assignment problem is ar important problem in military defense. Some
of the papers that have been written on the subject will be briefly summarized in this section.

In [4], denBroeder et al. consider the special case of the Static Target-based problem
in which the kill probability of a weapon-target pair is independent of the weapon (i.e a
singie class of weapons). They present an optimal algorithm for solving this version of the
problem. This algorithm, which is usually referred to as the Maximum Marginal Return
(MMR) algorithm in the literature, will be discussed in more detail in chapter 2. Kattar
implemented this algorithm and presents some numerical results in [5].

Matlia [6] provides a review of the literature on weapon-target allocation problems.
Several refereuces are given and are classified by the model under consideration. Eckler
and Burr [7] also give a review of the material on weapons allocation problems. Besides
giving references, they summarize different mathematical models and provide some analysis.

However, in these studies, very little emphasis is given to the dynamic allocation of weapons
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which is the main focus of our research.

A major result, abtained by Lloyd and Witsenhauser [2], is that the Static Target-based
problem is NP-Complete. What this means is that the computation time of any optimal
algorithm for the problem will grow exponentially with the size of the problem. Since this
version of the problem is a special case of all the other versions being considered, we can
conclude that the other versioas are also NP-Complete.

In [8] Soland considers the dynamic version of the Asset-based problem under the as-
sumptions that there is a single asset and that at each stage the kill probability is the same
for all weapon-target pairs. He uses stochastic dynamic programming and provides some
numerical results. It car be shown that the single-asset, dynamic asset-based problem can
be formulated as a dynamic target-based problem with unit-valued targets. Hence, our
results for the dynainic target-based problem {chapter 3) can be applied to the problem
studied in Soland’s paper.

In [9] Burr et al take a different apnroach to the weapon-target allocation problem.
Instead of fixing the number of defensive weapons and minimizing the amount of damage
caused by the offense’s weapons, they minimize the number of defensive weapons needed by
the defense to provide a given level of defense (i.e. an upper bound on the damage caused
by the offensive weapons).

A group at Alphatech Inc., under the leadership of Dr. D. A. Castafion, has examined
both target-based and asset-based problems in the context of the Strategic Defense System.
Their recent reports, although unclassified, are restricted and the author did not have access
to these documents. On the other hand, personal communication with Dr. Castafion [i0]
ensured that no serious duplication of effort and results occurred.

In conclusion, we have found that the open literature on the dynamic versionz of the
target-based and asset-based problems is scant. Furthermore, the literature which addresses

the dyramic problem contains few analytical results because of the difficulty of the prublem.

* Computational results are also limited because most of these are restrictec. Our research

will focus on the dynamic versions of the target-based and asset-based problems. We will
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provide both analytical and computational results. Since our research is unrestricted, it can

serve as a starting point for those interested in this line of research.
1.3 Contributions of Thesis

In Chapter 2 we will present the Static Target-Based WTA Problem. This problem has
been shown, by Lloyd and Witsenhausen [2], to be NP-Complete. We have obtained an
optimal local search algorithm for the case of a single class of weapons. This algorithm may
be preferable to other algorithms for solving this version of the problem because it is easily
parallelizable.

In Chapter 3 we will present the Dynamic Target-Based WTA Problem. This problem is
also NP-Complete so we looked at some special cases. For the case of identical targets and
a uniform kill probability that is independent of the stages, we obtained analytical solutions
for the case of two targets and in the limit as the number of targets goes to infinity. These,
as well as numerical results, were then used to compare dynamic and static strategics. This
comparison is important since it shows that there is a significant performance advantage in
using a dynamic strategy instead of a static one. Under suitable assumptions we will show
that, approximately half as many weapons are required for a dynamic strategy to obtain
the same performance as a static one. We also obtained an analytical solution in the limit
as the number of targets goes to infinity under the assumptious of identical targets and
stage dependent (but weapon and target independent) kill probabilities. This provides us
with a good approximation for problems with many targews. It can be used to investigate
how the solution changes as the kill probability in each stage varies. We also looked at
the case of weapon independent (but stage and target dependent) kill probabilities. Under
these assumptions, the problem is still difficult because multiple local optima may exist.
However, if the number of weapons to be used in each stage is fixed, then we can show
that a greedy algorithm is optimal for the case of two targets. The key contribution of this
chapter is our asymptotic result for the case of unit valued targets and stage dependent kill

probabilities. We can conclude that, in gereral, the performance of the dynamic strategy is




—_—— e e e e — i e

CHAPTER 1. INTRODUCTION 22

significantly greater than that of the static strategy. Furthermore, a good heuristic for the
dynamic strategy is to use a MMR type algorithm.

In Chapter 4 we will present the Static Asset-Based WTA Problem. We will assume that
the kill probabilities are independent of the weapons (since the problem is NP-Complete
otherwise). The question as to whether or not the problem under the assumption of weapon
independent kill probabilities is NP-Complete or not is still open. Under this assumption
we have obtained a sub-optimal algerithm which produced near-optimal solutions for the
problems on which it was applied. The algorithm also produces an upper bound on the
optimal value for the problem. We believe that this is the best available algorithm for
solving this version of the Static Asset-Based problem, The algorithm was used to obtain
several numerical and sensitivity analysis results. From these results we will conclude that
the optimal value for the problem is very sensitive to the kill probabilities but insensitive
to the lethality probabilities. We will also find that, as the offense increases the number of
targets, the defense must increase the number of defense weapons at a greater rate in order
to maintain the same level of defense.

In Chapter 5 we will present the Dynamic Asset-Based W'TA Problem. We will assuma
that the kill probability of a weapon-target pair is dependent solely on the asset to which the
target is aimed as well as the stage number. This assumption was made for two reasons, (a)
to reduce the dimensionality of the problem and (b) the problem is NP-Complete otherwise,
Note that even under these assumptions we believe that the problem is still NP-Complete.
Our belief is based on the fact that to evaluate the value of a first stage assignment may
require an exporential number of operations. We have obtained a sub-optimal algorithm
for this version of the problem. A method is also provided for obtaining an upper bound
on the optimal value. This algorithm is unique in that it approximates the cost-to-go
function in the present stage rather than approximating the cost function for the last stage.
Computational results show that the algorithm performs well. The key contribution of this
chapter is the proposed heuristic. We can use our results to conclude that the dynamic

strategy cau offer a significant increase in performance over the static strategy.




Chapter 2

The Static Target-Based Problem

In this chapter we will present the static version of the Target-Based WTA problem. This
problem has been well studied in the literature. It has been shown by Lloyd and Witsen-
hausen [2] to be an NP-Complete problem in general. Therefore only sub-optimal algorithms
have been proposed for its solution. In the case of a single class of weapons an optimal al-
gorithm has been proposed by denBroeder et al. [4]. The material presented in this chapter
is essential for a complete understanding of the results in later chapters.

This chapter is essentially a review of the literature on the Target-B. sed problem. In
section 2.1 we will give a inathematical statement of the problem. In section 2.2 we will
consider the case of a single class of weapons. In this case the kill probabilities are solely
dependent on the targets. The optimal algorithm of denBroeder et al. [4] will be presented
in this section. We will also present a new optimal local search algorithm for solving this
special case of the problem. In section 2.3 we will present a network flow formulation of the
problem under the more general assumption that the kill probability of each weapon-target
pair is eithe: zero or, if non-zero, it is solely target dependent. A network flow approach has
the advantage that several algorithms already exist for network flow optimization problems.
Also in section 2.3 we will present a network flow formulation of the problem under the sole
restriction that at most one weapon can be assigned to each target. Several algorithms are
available for solving such problems. In section 2.4 we will present a method for obtaining a

lower bound on the optimal cost of the problem. This lower bound is obtained by relaxing

23
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the constraint that weapons must be assigned in integral quantities. Nonlinear programming
techniques can then be used to sclve this relaxed problem. One such method is to find and

solve the dual of the problem. In 2.5 we will present our conclusions.
2.1 Problem Definition

In this version of the problem, the offense launches its weapons (the targets of the defense)
at the defense’s assets. The defense assigns values! to these targets based on the predicted
target type, the value of the predicted point of impact and other relevant factors. The
defense has weapons which can be used to engage these targets before they impact. A
one-to-one kill probability is assigned to each weapon-target ,.uir. This is the probability
that the weapon destroys the target if it is assigned to it and reflects such factors as the
weapon type, the time and geometry of intercept, the characteristics of the engagement of
the specific weapon-target pair and other relevant factors. Therefore, in general, the kill
probability of a particular weapon-target pair will be different to the kill probabilities of
all other weapon-target pairs. The objective of the defense is to assign its weapons to the
targets so as to minimize the expected total value of the surviving targets. Note that in the
optimal assignment some high valued targets may be engaged by more than one weapons
while others (with low values) may not be engaged by any weapons.

In this version of the problem all weapons are assigned and fired simultaneously. Since
there is no time dependence, we will call this a static problem. We will also assume that the
state of the targets (survived or destroyed) is observed after all weapoxs have been fired.
In other words there is no feedback of information. This assnmption will be valid in cases
in which the defense has only a single opportunity to engage the targets. This would occur
in confli~ts in which the flight duration of the targets is short.

We will also assume that the engagement of a weapon-target pair is independent of ali
other weapons and targets. In practice this assumption may net hold for all engagements

because targets near a weapon-target intercepticn will be affected by the dcebris of the

'Note that it would be more appropriate to call these target costs but we wish to conform to the notation
used in the literaturs,
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explosion. However, the problem i.. very difficult without this assumption because one must
then include the geometry of the problem.
The following notation will be used in the mathematical definitior of the Static Target-

Based problem. The definitions of all additional notation may be found in Appendix A.

N % the number of targets (offense weapons),

M % the number of defense weapons,
Vi % the value of targeti, i=1,2,...,N,
Pi 4 the probability that weapon j destroys target i if it is assigned to it,

i=12,...,N, i=12,...,M.

The decision variables will be denoted by:

goi=d 1 if weapon j is assigned to target ¢,
Y71 0 otherwise.

The probability that target i is not destroyed by weapon j is given by (1- p;;)*. Therefore,
since it was assumed that the engagement of a target by a weapon is independent of all
other targets and weapons, the probability that target i survives after all weapons have

been fired is given by ['[;":1( 1 - pi;)*+. The problem is therefore given as follows.

Problem 2.1 The Static Target-Based WTA problem (STB) can be stated as:

N M
min F=)» V 1= pi; )™,
[z el0) E i };Il( Pij)

o’

N
gubject to Zz,-jzl, i=12,...,.M.
—~

The objective functien, F : {0,1}¥M —, R, is the total expected value of the surviving

targets. We will show that this function is convex.? The constraint is due to the fact that

. each weapon must be assigned to exactly one target.

*Note that convex functions are defined in convex sei; (see definition A.3.) The set in which F' is defined
is not convex so it is incorrect to discuss the convexity of this furction. In this context, what we really mean
is that if we relax the integrality constraint (i.e allow 0 < x;, < 1) then the function F is convex in this set.
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Theorem 2.1 If we relaz the integrality constraint and allow 0 < z;; < 1 then the function

F :[0,1]NM —— R, as defined in problem 2.1, is convez.

Proof: Since the sum of convex functions is convex then we only need to show that the
function H}-w:l(l — pij)* is convex for each index i. Let us drop the subscript ¢ and prove

that the function o
9@ =11 - )™

j=1

is convex in the set [0, 1]M. Pick 7€ [0,1]™ and 7€ [0,1]M and let A € [0,1]. Define
¢ = 9()/9(2).
We have
Ag(#) + (1 — A)g(2) = g(D)[Ad + (1~ A))],
and we also have
g(AF+ (1 - X)3) = g(H[¢™].

The function ¢* is a convex function of A\, Furthermore the function Ag + (1 — A) for

A €[0,1] is a chord of the function ¢*. Therefore
< Ad+(1~1), Ae[0,1].
Since g(2) > 0 we can conclude that

Ag(d) + (1 - A)g(2) 2 9(AF + (1 = 1)2).

is convex which implies that the function F is convex.

Hy
N

Figure 2.1 contains a pictorial representation of the problem. The circles on the left
represent the weapons while those on t’ : right represent the targets. For each weapon-
target pair with noun-zero kill probability an arrow is drawn from the weapon to the target

and labelled with the kill probability of the pair. Fach of the targets is labelled with its




CHAPTER 2. THE STATIC TARGET-BASED PROBLEM 27
Weapons Targets

1

Fipure 2.1: Representation of a Static Target-Based Problem

value. Note that a close inspection of such a graph can lead to the dizcovery of any special
structure. This special structure can then be exploited to decrease the computational time

or to increase the quality of the solution obtained by a heuristic.

Problem 2.1 has been proven by LLoyd and Witsenhausen {2] to be NP-Complete.
Basically what this means is that, if a polynomial time algorithm exists for solving this
problem then one also exists for solving many other di ficult probleins such as the travelling
salesman problem. At present, the belief is that polynomial time algorithms do not exist
for this class of problems. Note that, although the set of icasible solutions is finite, the

number of them, NM, is so large that complete enumeration is not a practical option.

e s-tre D Ry
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We will see in the next section that if we assume that the kill probabilities do not depend
on the weapons (i.e. we have a single class of weapons) then the resulting problem can be
solved by a polynomial time algorithm. This implies that the basic difficulty of the problem
stems from the fact that there are multiple types of weapons. The probiem is also difficult
because of the non-linearity of the objective function.

The complexity of the problem suggests that one should rely on sub-optimal algorithms.
We will lock at optimal algorithms for special cases of the problem. These may then be

used as heuristics for the general problem 2.1.
2.2 A Single Class of Weapons

In this section we will present two optimal algorithms for solving problem 2.1 under the
additional assumption that the kill probabilities are independent of the weapons, i.e. p;; =
pi. This assumption is valid if the defense has a single type of weapon and all weapons are
located in the same area so that the geometry and time of intercept is the same for all of
them.® Even if the assumption is not valid, the results of this section can easily be modified
to provide a heuristic for the more general versicn of the problem. Under this assumption,

the subscript j can be dropped and we can use the foliowing notation:

i 4 the kill probability of a weapon on target i, i=1,2...,N,

z; % the number of weapons assigned to target i, (the decision variable),
F & [z1,...,zNn]T,

N 4 the set of ordered N -tuples of non-negative integers.

Such a gronping of weapons is called 3 weapon cluster in the litersture.
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We can use these simplifications in the notation to restate the problem.

Problem 2.2 The Single Weapon Class, Static Target-Buased Problem (SSTEB) can be stated

as:’

N
' F1- = “/'1_ ',Ii’
i, @ % (1-p)

N
subject to z::.- = M.

=1

Note that the objective function, F : Zf -— R, is convex and separable. These properties
reduce ihe difficulty of the problem.

There are two algorithms that are guaranteed to find the optimal solution to problem
2.2, The first one, due to denBroeder et al. {4] is called the Mazimum Marginal Return
(MMR) Algorithm. This is a polynomial time algorithm with a computational complexity
of O(N + M log N). This implies that problem 2.2 is polynomial time solvable. The second
algorithm, due to us, starts from a feasible solution and locally searches for a better solution.
We will therefore call this a Local Search (LS) algorithm. The latter algorithm has the
advantage that, if small changes in the problem parameters are made then little additional

work is required to obtain the new optimal solution.
2.2.1 The Maximum Marginal Return Algorithm

In the Maximum Marginal Return algorithm, weapons are assigned sequentially to the
target for which the reduction in the objective cost is maximum. The algorithm terminates
after all weapons have beex assigned. The Pidgin Algol code for the algorithm is given in
figure 2.2,

The marginal return of adding an additicnal weapon to a target is represented by A;.

The target with the maxiimnum return is found and the number of weapons assigned to this

target is increased by one. The marginal return of this target is updated and the procedure
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procedure MMR

begin b
£:=[0,...,0]T;
fori = 1:N do A; := Vp;
for j = 1:M do -
begin
Let k be such that Ay = max;{A;};
e =z +1;
Ak = Vipe(l — pu ™%,
end
end

Figure 2.2: The Maximum Marginal Return Algorithm applied to the Single Weapon Class,
Static Target-Based problem.
is repeated until all weapons have been assigned. Note that the marginal return if ; is

increased by one is given by

3 Ai = Vil(1 - pi)™ = (1= p)™*1] = Vipi(1 = pi)™.

¥ Since initially z; = 0 for all tavgets 1 then the initial marginal returns are given by A; = Vip;.
Theorem 2.2 The assignment produced by the MMR algorithm is optimal for problem 2.2,

Proof: Since the functions Vi(1 — p;)® are convex then problem 2.2 satisfies the condition:
that are required in order to apply theorem B.1. Theorem B.1 can therefore be appiied to

prove optimality. The application of the theorem is straightforward. &

Note that the assignmeni of a weapon to a target reduces the targei’s probabilily of
survival. One way to reflect this is to reduce the target’s value to its expected surviving
value. This is precisely what the MMR algorithm does. It assigns the first weapon to the
target for which the resuiting reduction in value is maximal. The valve of this target is

_reduced to its expected surviving value and the process is repeated until all weapons are

assigned. .

The MMR algorithm is extremely simple as weli as fast. The marginal returns can
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procedure LS
- begin
let & be any feasible assignment;
for i = 1:N do A& := Vipi(1 — p;)**
- modified := TRUE;
while (modified == TRUE) do
v begin
' modified == FALSE;
for i = I:'N do
for j = 1:N do
begin
if A;j/(1~pi) < & end 2; > 0 then
begin
Tii=zy~];
=i+ 1;
modified := TRUE,
end
elseif A;/(1 —p;) < A; and z; > 0 then
begin
Tji=z;— 1
zi= i+ 1
modified := TRUE;
end
end
- end
end

Figure 2.3: The Local Search Algorithm

initially be numerically ordered in O(/N) time. After each iteration, the updated marginal
return must be re-inserted into the list. This can be done in O(log V) time. Since the num-

ber of iterations is M, the computational complexity of the algorithmn is O(N + M log N).
2.2.2 The Local Search Algorithm

The Local Search Algorithm starts with any feasible solution to the problem. It then
s arches for a pair of targets such that the removai of a weapon from one of the targets and
the addition of this weapon to the other target reduces the cost. This process is repeated
. until no more reductions can be made. This is called a local search algorithm since it
searches for a descent direction in the neighborhood of the present solution. The code for

this algorithm is given in figure 2.3.
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The marginal returns A; are first computed for each target ¢, For each pair of targets
i and j with z; > 0 we check to see if removing a weapon from target ¢ and adding it to
target j decreases the objective cost. Note that the increase in cost if a weapon is removed
from target i is given by Vi(1- p;)*~1. Since A; = V;(1—p;)** then the increase in cost can
also be written as A;/(1—p;). Note that for each iteration in which the solution is updated
the cbjective cost is strictly decreased. Since the number of feasible solutions is finite then

the algorithm must terminate after a finite number of iterations.
Theorem 2.3 The assignment produced by the LS algorithm is optimal for problem 2.2

Proof: Let #* denote the vector of optimal assignments and let £ denote the assignment
obtained on termination of the LS algorithm. Let F(2*) and F{&) denote the correspouding
costs. Let us assume that (£*) < F(£) (i.e. that the solution produced by the LS algorithm
is not optimal). This implies that there exist targets i and k with the property that z7 > z;

and x; < . By the nature of the algorithm it must be that

Vipe(1 = pi)™ 7 > Vipi(1 - pi)™.

We therefore have
Vik(1 = pi)™ > Vioe(1 - p)™ ! 2 Vipi(1 - i)™ 2 Vipi(1 = p)= 70 (2.1)

Note that equality must hold throughout in the expre.sion 2.1 otherwise the assignment &,
which was assumed to be optimal, could be improved by removing a weapon from target
i and assigning it to target k leading to a contradiction. On the other hand, if equality
holds throughout then, if a weapon is removed frov, target i and assigned to target k in
assignment 3™ then the resultant assignment, which we will call 77, is also optimal. Note
that the assignment 3* is closer io assignment & (ie. |£— £ > [T - 7*|). We can now
repeat the process to get another optimal soiution which is even closer to assignment ¥ than

is z*. After a finite number of repetitions of this process we will obtain the result that & is

als» an optimal assignment. W
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One desirable property of the LS algorithm is that several of the descent iterations can
be done in parallel. For example, suppose that two processors P1 and P2 were available
to solve the problem. Assume (for simplicity) that N is even. Let us assign P1 to targets
1 to N/2, and P2 to targets N/2 + 1 to N. Fach processor will be allowed to assign M /2
weapons. Starting from any feasible solution, P1 can execute the LS algorithm on its targets
while P2 can evesnte it on its targets. Let & denote the solution after P1 and P2 have each
executed the LS algorithm on their targets. Let A denote the corresponding set of marginal
returns

A; = Vipi(1 - pi)™.

Note 1hat if

. A
28 Uy 3 2.
lsrc‘nsllr\‘m{l—p;} "N/gg,éN{A’} 22
and
: A;
min  { -——5 > max {A}, (2.3)
Nj2<isN |1 - pj 1>i<N/2

then the solution Z cannot be improved by a pairwise swap hence it is optimal. If, on the
other hand, the inequality 2.2 does not hold, then the solution can be improved by removing
weapons from one or more of the targets assigned to P1 and adding them to the targets
assigned to P2. Similarly, if inequality 2.3 does not hold, then the solution can be improved
by removing weapons from one or more of the targets assigned to P2 and adding them
to the targets assigned to P1. The algorithm can then be executed on P1 and P2. This
process can be repeated until the inequalities 2.2 and 2.3 both hold. Note that the problem
solved by each processor is essentially half of the size of the original problem. Also note
that each of the processors has to execute the LS algorithm on half of the targets. Instead
of using one processor to do this we can again split the problem (into two subproblems of
N/4 targets each) and use two processors to execute the LS algorithm on the N/2 targets.

In this manner the method can be extended to more than two processors.
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ENVI PN

2.3 Network Flow Formulations of Special Cases
T In this ection we will formulate special versions of problem 2.1 as Network Flow Opti-

mization problems. By doing this we can make use of several efficient algorithms which are

|
|
i already available for Network Flow Optimization problems. We will find that this approach
i works well for the case of the Static Target-Based problem. However, Network Flow for-
|

mulations are not possible for the Asset-Based problem or for the dynamic versions of the

! Target-Based and Asset-Based problems.

I N
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2.3.1 Weapons with Limited Target Coverage

In the previous section we had assumed that the kill probability is independent of the
weapons. In this section we will assume that for each weapon-target pair the weapon can
either be assigned to the target or it cannot be assigned to the target (i.e. each weapon
can only reach so..1e of the targets). If it can be assigned to the target then we will assume
that the kill probability of the pair is only dependent on the target. In other words we
are assuming that the kill probability of a weapon-target pair is either 0 or some target
dependent value p; (i.e p;; € {0,p;}). This assumption is appropriate for the case in which
the weapons are geographically distributed. In such a case each weapon may only be able to
reach a subset of the targets. The kill probability of a weapon on a target which it cannot
reach can be set to zero. If this is done then the weapon will not be assigned to the targets
it cannot reach. Let C; denote the set of weapons which can reach target 7 {i.e the set of

weapons j such that p;; > 0).

Problem 2.3 The Limited Target Coverage problem can be stated as:
N S e
in  F=) Vi(l—p;)~wec,™
iy = R

N
subject to Z.’L‘.‘j:l, i=1,2,..., M.

i=1

Note that the survival probability of each target depends on the snm of the weapons aimed
for it. It is this fact which makes a network formulation of the problem possible.

We will define a network for this problem as follows. For each weapon and each target
we wili include a node (see figure 2.4). For each weapon-target pair we will include an arc
between these nores if the kill probability of the pair is non-zero. Denote this set of arcs
by A. Each of the weapon nodes will be a suppiy node with a supply of 1. We will also

include o sink node s. The sink node will have a demand of M. For each target node we will
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WEAPONS NODES TARGET NODES SINK NODE
supply=1

supply=1 demand=3

supply=1 .

Figure 2.4. Example of the Network Flow representation of a Static Target-Based problem
with 3 weapons and 3 targets. Arcs are drawn between a weapon-target pair only if the kill
probability of the weapon on the target is non-zero. These arcs have a capacity of unity.
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include an arc from the target node to the sink node s. The flow on the arc from weapon
node ¢ to t .rget node j will be denoted by z;;.4 “*e flow on the arc from target node j to
the sink node s will be denoted by z;,. All arcs from weapon nodes to target nodes will
have a lower bound of 0 and an upper bound of 1. All arcs from the target nodes to the
sink node s will have a lower bound of 0 and an upper bound of M. There will be no cost
associated with flow on arcs from the weapon nodes to the target nodes. The cost of having
a flow of z;, on the arc from target node j to the sink node will be denoted by Fj,(z;,).

The functions Fj, : [0, M] —> R are given by*:

Fiy(2) = Vil(1 = p) + (2 = |21 = pp)F = (A=), 02 s M.

YThe ordering of the subscripts is different to that used in the definition of problem 2.1. We have changed
the ordering to conform to the notation commonly used in graph theory for denoting an ordered arc.
>The reader can refer to Appendix A for a definition of the notation [z and [z].
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Figure 2.5: An example of the arc flow cost, ij,(z;,), for a target j wiih value V; = 1 and kili
probability p; == 0.8. Function values for nou-integral flows are «.btained by interpolation
of the values for integral flows.
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This function can be described in words as follows. If k € Z, weapons aie assigned to

target j then the expected surviving value is given by V;(1 - p,)*. Note that this is the

same as F},(k) which is what we want. However, in the network flow problem the arc flows .

z;j, are allowed to have real values. The cost function must therefore be defined for real
valued flows. We have done this by letting Fj,(z) for 0 £ ¢ £ M be the linear interpolation
of the function Fj,(z) defined for z = 0, 1,..., M. For example, consider the case in which
p; = 0.8 and V; = 1 for some target node j. In figure 2.5 we have plotted the function
Vi(1 - p;)* for z; = 0,1,2.3,4,5 with stars. The linear interpolation of this function is
plotted with the solid line. Therefore the solid line represents the function Fj,(z;,). We

can now deline the corresponding network flow optimization probiem.

Problem 2.4 The Conver, Minimum Cost Network Flow problem (CNET) can be stated

as:!

N
min _ F =Y Fj,(z:),
zaeoM]y = (232)

subject to
@) Tgiemzi=1 i=12,....M,
(d) Tiigear Tii = %js §=1,2,..., N,
(C) E_{IY—"I :CJ', = M
(d) 0< ;<L Y (i,j)cA

(e) 0<z;, <M i=12,...,N.

Note that the weapons are indexed by 7 while the targets are indexed by j. The objective
function is the sum of the cost of the flow over each arc. Constraint (a) is due to the fact
that the weapon nodes are supply nodes with supply 1. Similarly constraint (c) is due to

the fact that node s is a sink node with demand M. Constraini (b) requires that the total
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flow into a target node must equal the total flow out of it. Constraint (d) is due to capacity
. bounds on the arcs from the weapon nodes to tue target nodes. It restricts the number of
weapons assigned from a weapon node to a target node to one. Constraint (e) is due to the
! capacity bounds on the arcs from the target nodes to the sink node s.
Note that if the flows are restricted to be integral then the network fiow problem is
” identical to problem 2.3. This can be seen as follows. Since the flow is integral then,
because of the constraints, exactly one of the arcs out of each weapon node will have a flow
of 1. The target node to which this arc belongs is the target to which this weapon would be
assigned. Therefore, this implies that the flows z;; are integral. If the flows z;; are integral
then the flows z;, are also integral. However for integral values of z;, the function Fj, is
the same as the expected surviving value of target 7 which is the function being minimized

in problem 2.3.
- Theorem 2.4 An optimal solution to probiem 2.4 ezists in which all flows are integral.

: Proof: This problem can be transformed into a minimum cost network flow problem with
]' linear arc costs as follows. Instead of a single arc from each target node to the sink node
we will include M arcs between each target node and the sink node. Each of these arcs will
- have a capacity of one. Each of the M arcs from target node j will represent one of the
-; l M linear segments of the function Fj, and will have an arc flow cost equal to the gradient
3 of the linear segment which it represents. Th~ solution of this problem is the same as the
‘olution of the problem CNET. Since this is a linear cost problem and the arc capacities,
the supplies and the demands are all integral, then there exists an optimal solution in which

- all arc flows are integral (see page 239 of [11] for details). ®

We have shown that the solution {o the network flow problem 2.4 is integral. Further-
more we have shown that, if the optimul solution to the network flow problem is integral
then it is optimal for problem 2.1. Therefore, the optimal values of the variables {2;;} of the .

network flow problem is optimal tor nroblem 2.1. Several algorithms have boen proposed
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for solving the network flow problem 2.4. The reader can refer to [11] for the details of some

of these algorithms.
2.3.2 Special Case of at most one Weapon per Target

In this section we will consider problem 2.1 under the additional assumption that each
target can be assigned at most one weapon. We will show that this can be converted into a
Linear Minimum Cost Network Flow Problem. Note that this constraint implicitly assumes
that M < N.
Let u. first note that if :2;; € {0,1} for j = 1,2,..., M, then

M M

TI(1 = pi)ye = TT(1 - pijaiy).

i=1 i=1

Second note that if we also have Eﬁl z;; <1, then

M M
¢ = pijzii) = 1= pijaise
ji=1 i=1

Therefore, under the constraint that at most one weapon can be assigned to each target,

problem 2.1 can be simplified.

Problem 2.8 The Linear Cost Network Flow problem (LNET) can be staied as:

.
F=Y_> Vipijzij,

max
{.‘!:.'_,E{O,l}} i=1 y=1

subject to

Zz,'j =1 j=12,.... M,

=1

M
Somi<l, i=12,...,N.
—

The first constraint is due to the fact that each weapon can be assigned to 2t most one

nats vt s e S 8y ottt s et .y o
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target while the second is the additional constraint that each target can be assigned at most
one weapon.

Problem 2.5 is called a Transportation Problem, whick is a special case of the Linecar
Minimum Cost Network Flow Problem. If M = N then it is called a Weighted Bipartite
Matching Problem®. These problems bave been well studied and many algorithms are
available for solving them. Details on these algorithms can be found in [13] and [11].
The paper by Orlin [14] also discusses Network Flow formulations for the weapon to target
allocation problem.

We can conclude that, by transforming special cases of the Static Target-Based problem
into Network Flow optimization problems we can efficiently solve these special cases. This
approach works well for the static version of the Target-Based problem. However, the
approach is not easily externdable to more general versions of the weapon to target allocation

problem.

2.4 Bounds on the Optimal Cost

Since the general problem is NP-Complete, heuristics will have to be used to solve it. It is
therefore helpful to have bounds on the optimal cost so0 that one can have an idea of the
performance of these heuristics. The cost of any feasible solutio.: is an upper bound on the
optimal cost so we will concentrate on finding a lower bound.

Recall that one of the constraints of problem 2.1 is that the decision variables must be
integral. Let us call the problem in which this constraint is relaxed, the Relaxed Static
Target-Based Problem. The solution to the Relaxed probiem would be the optimal soiution
to the problem in which the defense was allowed to fire “fractional” weapons at the targets.
Note that the optimal cost of the Relaxed problem is a lower bound on the optimal cost of
problem 2.1. This is due to the fact that the feasible set of the relaxed problem contains the
feasible set of problem 2.1. The Relaxed problem will be solved to ohtain a lower bound on

the optimal cost of 2.1. Note that the Relaxed problem is easier to solve because nonlinear

*The weights for this problem are given by Vip,,.
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programming techniques can be applied.
In the relaxed problem the constraint z,; € {0, 1} is relaxed to z;; € {0, 1]. Furthermore,
since z;; 2 0 then the constraint ):,-’il 2;; = 1 implies that z;; < 1. Therefore the constraint

z;; < 1is not necessary.

Problem 2.8 The Relazed Static Targei-Based problem (RSTB) can be stated as:

N M
min F = ZV.- H(l - pij)*",

{Iij 20} i=1 j=1

N
subject to Zx.-_,- =1, j=12,....,M.
=1

This is a Convez Programming Problem’. Since the problem involves minimizing a convex
function over a compact, convex set then it can be shown that an optimal solution exisis.
Furthermore the optimal cost is finite. In the following discussion this problem will also be
referred to as the Primal problem.

We will now define the dual of the relaxed problem 2.6. The reader can refer to Appendix
A for the definitions of the notation used. It can be shown that the optimal cost of the
dual problem is the same as the optimal cost of the primal problem. Therefore, the dual
problem can be used to obtain the optimal cost for the relaxed problem which will provide
us with a lower bound on the optimal cost of probiem 2.1.

Define the matrix X € [0, 1}V*M by

[X],'j =Ty,

"See [12] for a definition of a Convex Programming probiem.
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The Lagrangian function L(X, ), defired for X € R¥*M and A € RM for problem 2.6 is

given by
L(X,\) = ZV 1'[(1 - i + 2,\ [Lz., - 1]
=1 FE =l
N
=3, (V-' O -pi5) v + ZAﬂ?-‘j) - }:M (2.4)
=1 j=1 y=1 =1

The dual functional ¢ : R¥ — R is then given by
q(A) = gg L(X,)) (2.5)

where we have used ihe notation X > 0 to represent z;; > 0 for i = 1,2,...,N and

J7=1,2,...,M. Let us derive an explicit « :pressioa for g(A).

g(A) = minL(X,A)

X>0
M
= 51{1;0 ( H(l — pu)-’?u 4 E)\ 3.‘,) - ZAJ
i=1 )=1 i=1 1=1
= —-EA +Emm (V II(I—p,] Tis 4 ZA m,,) .
i=1 ual =1

The vector £; € RM is the ith row of the matrix X. Note that the problem has been
simplified nto N subproblems. Let us consider one of these subproblems. The subscript &

will be dropped to simplify the notation. Each subproblem can be written as

M M
min (&) =V I__I“ - )"+ ‘z:: Ait;. (2.6)

where g : R™ — R is the objective function. Note that g is also dependent on A and is a

Y
= 1 _
= j-—-l.n'}{.n...M{Vln(l = p_,')}

M

®=[J(1-p)™.

1=1

conver function of . Define

and
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Note that < 1. The derivative of g along the j*} coordinate is given by

dg
E—;; = Van(l --p_,) + AJ.

We have the following lemma.

Lemma 2.1 If we denote the optimal solution to problem 2.6 by 2™ then T’ 2 1 if and only

if & = 0.

Proof: If ' 2 1 then, by the definition of ', we know that for j =1,2,..., M

=N 1> 6.

- >
Vin(l- pj) -
This implies that ff; > 0. I this is the case then, because the function g¢ ic strictly convex
then it must be that z;=0forj=1,2,..., M.

Let us now prove the converse. Ii £* = 0 then ff; > 0 for all j. We also have ¢ = 1.

Therefore
Vin(l~p;)+ A; = Ve®In(l - p;) +4; 2 0.
This implies that I' > 1. O

Let us now assume that 0 < I' < 1. Suppose that I' = —A/(V1u(l — pi) (i.e the

minimum in the definition of I' is achieved for the index &). Since 3‘% > 0 at xy = r} then
Ve(zZ")In(1 - pr) + A 2 0,

which implies that

o = 1. (2.7)

() < o3 S
Vil — g}

By Lemma 2.1 there must exist an index j such that z7 > 0 which implies that
V(& )In(l —p;)+ A; = 0.

oy A
= )= Y=

v

r. (2.8)
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Using the inequalities 2.7 and 2.8 we conclude that $(£*) = T'. Therefore we can write

$(7) =T
M .

= J[[(1-p)7 =T
j=1

M
= Y zjin(l-p;)=MhT

=1

ol M
o = Y z}); =-V@IT.

. =1

Finally we have:
g(Z")=VT({1 ~1InT).

4 If we denote the optimal value of problem 2.6 by ¢* then

! l vy _ ) VI(A)A =1InT(A)) for 0LT(A) <1
: A ‘{ v for T(A)> 1 (29)
' | where
—A;
A= i —d 5,
T joT M { Vin(l - p,-)}
The result in 2.9 can now be used to write the dual functional explicitly as
N M
OVED I HCIED PP (2.10)
: =1 j=1
) where
“(A) = ViLi(M) (1 =-InTy(A)) for 0<Ti(A) <1
g =y, for Ti(A\)>1
and I'i()) is defined as
) . -
‘.\1.;' I“(/\) - jr:lr.r%l,.l.l.,M { Viln(1 - p.‘j)} '
i The dual of problem 2.6 is given by
19;3{ g( ). (2.11)

Note that this is an unconstrained concave maximization problem. It can be shown that

for Convex Programming problems

F*o= (A7) = nga(r\)-
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where F* is the optimal cost of the primal problem. Therefore F* is equal to the optimal
cost of the dual problem.

The dual functional is concave. Unfortunately it is not differentiable everywhere. How-
ever, there are methods, such as subgradient methods, for maximizing non-differentiable
concave functions. The advantage in solving the dual problem instead of the primal prob-
lem is that the number of variabies in the duval problem is M, while the number in the
primal problem is NM. We therefore expect that algorithms for solving the dual problem
will be faster than those for the primal problem.

There are three general methods that can be used to solve problem 2.6 Direct Primal
Methods, Primal-Dual Methods and Divect Dual Methods. Direct Primal methods produce
algorithras which solve for the decision variables z;; directly. Algorithms in this class include
Feasible Direction Algorithms, Manifold Suboptimization Methods and Projected Newton
Methods (see [12]). The computation time deperds on the number of variables, which in
this case is NM. TFor the class of problems that we are interested in, this number will
be large so that these algorithms are, in gereral, impractical. Primal-Dual methods solve
both the primal problem 2.6 and the dual problem 2.11 simultaneously. This class includes
Relaxation Methods which are iterative in nature. One advantage of this method is that
the cost of any feasible solution to the dual problem is a lower bound to the optimal cost of
the primal problem so that if the iterations are stopped prematurely and the closest primal
feasible solution is found, one can obtain a lower bonnd and check the quality of the solution.
Disect dual methods solve the dual problem 2.11. As we have seen above, the optimal cost
for this problem is also the optimal cost for the primal problem 2.6. The number of dual
varial'es equals the number of constraints which, for this problem is M. Since this is much
less than the number of primal variables one would expect faster computation time than
direct primal methods. These methods however suffer from the fact that the dual functional
is non-differentiable,

The best method to use for finding a lower bound on the optimal cost for problem 2.2

will depend on the class of problems to be solved. For large-scale pioblems, the direct dual
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methods will prebably be more officient than direct primal methods. The paper by Pugh
[15] considers the use of Lagrange Multiplier methods for the solution of weapon to target

allocation problems.
2.5 Concluding Remarks

In this chapter we have presented a summary of previous work done on the Static Target-
Based WTA problem. We also presented a new algorithm, the Local Search algorithm, for
solving the problem under the additional assumption of weapon independent kill probabil-
ities.

We considered the special case in which the kill probability of a weapon-target pair can
either be 0 (meaning that the weapon cannot be assigned to the target) or, if it is non-zero,
it depends only on the target. In other words cach weapon can only reach a subset of the
targeis. This problem can be solved by first converting it to a Minimum Cost Network Flow
Probilem with Convex Arc Costs and then using algorithms for that problem.

We next considered the special case with the additional constraint that each target
can be assigned at most one weapon. This problem can be shown to be equivalent to a
Transportation Problem. Many polynomial time algorithms are available for solving the
Transportation Problem.

Note that these problems will have to he solved in real time since the engagement
time may be short. One method for solving these problems quickly is to sclve them on
parallel computers. Therefore, research in parallel algorithms for the problem is necessary.
Furthermore, the weapuns will be geographically distributed. This suggests the use of

distributed computation. This is another area of research that shouvld be investigated.




Chapter 3

The Dynamic Target-Based
Problem

In this chapter we will consider the dynamic version of the Target-Based WTA Problem.
This problem consists of a number of time stages. The defense is allowed tou observe the
outcomes of all engagements of the previous time stage before assigning and commiting
weapons for the present stage. This is called a “shoot-look-shoot-...” strategy since the
defense is alternating between shooting its weapons and observing (looking) at the outcomes.
Note that in a real conflict it is not possible to divide time into distinct stages as we have
done. This is because the offense’s weapons do not all arrive simultaneously and, even if
they did, the time of each weapon-target engagement will be different. ITewever, without
the assurnption of distinct time stages, the complexity of the problem is to great to obtain
any analytical results and hence any insights.

In section 3.1 we will give a mathematical definition of the problemn. In section 3.2
we will consider the effect of stage dependent (but weapon and target independent) kill
probabilities on the optimal assignment. We will assume identical targets and provide an
analytical solution in the limit as the number of targets goes to infinity. We will find that
if the weapon-target ratio is kept fixed, then, in the limit as the number of targets goes to
infinity, the problem can be considered as a deterministic one in which the number of targets
in each stage is equal to the expected number of targets which survive the previous stage.

This simplifies the analysis since a deterministic problem is much easier to solve. In section

44
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3.3 we will consider the special case of identical targets and a uniform kili probability for all
weapon-target pairs and all stages. In this section we will provide analytical results for the
case of two targets as well as for the limit as the number of targets goes to infinity. These
results will then be used to aralytically compare dynamic and static strategies. We will

obtain the very interesting result that roughly half as many weapons are required for the
‘ ! dynamic strategy to obta’ che same performance as that of the static strategy. Section ?.4
! contains the special case of weapon independent kill probabilities. We will demonstrate that
|| this problem is difficult because multiple minima may exist. We will provide an algorithm
‘; for finding oue of these local minima. An optimal algorithm for the case of two targets will

also be presented. Finally in section 3.5 we will provide some concluding remarks.

3.1 Problem Definition

|

|

|

\
5 i In the dynamic problem the time duration of the offense’s attack is divided into a number

] of time segments. Each segment is of sufficient length to allow the defense to use a subset of
: its weapons and observe (perfectly) the outcomes of all of the engagements of the weapons.
With the feedback of this information the defense can make better use of its weapons, since
- it will no longer engage targets which have already been destroyed. Thus we are dealing
.‘ ] with so-called “shoot-look-shoot-...” straiegies.
| We assume that in the initial stage “he defense chooses a subset of its weapons and
assigns them to targets. These weapons are then commiited simultaneously. In the second

stage the outcomes (i.e. the survival or destruction of each engaged target) of all of the

engagements of the weapons committed in the first stage are observed. Based on this

observation, the defense chooses a subset of the remaining weapons and assigns them to
i the targets which survived the stage 1 engagements. In the third stage the outcomes of
the engagements of the weapons committed in stage two are observed. Based on this
i observation, a subset of the remaining weapons is chosen and assigned to the set of surviving
| ' targets. This process is repeated for all time stages. In each stage the weapons are chosen
|

and assigned with the objective of minimizing the total expected value of the surviving

T T T -
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targets at the end of the final stage.

Note that in each stage the problem is resolved based on the outcomes of the previous
stage. Thisimplies that in each stage one is interested in obtaining (a) the subset of weapons
which are to be fired in that stage and (b) the optimal assignment of these weapons to
targets. Note that in computing the optimal assignment for the present stage one must
assume that in all subsequent stages an optimal assignment will be used. If this is not done
then the expected cost for the problem could be improved by doing so. This is known as the
Principle of Optimality in dynamic programming [16]. We will therefore implicitly assume
that optimal assignments will be used in all subsequent stages.

Note that the only information required to compute the optimal assignments in a stage
ic the set of surviving targets, the set of remaining weapons and the number of stages left.
Al other information of previous stages is not relevant. Therefore at each stage the problem
can be restated as one in which the present stage is the first stage of the restated problem.
The initial set of targets for this problem is the set of surviving targets and the initial set of
weapons is the set of remaining weapons. In other words the problem to be solved in each
stage has the same form as the statement of the problem for stage 1. Therefore, although
we will only consider the T-stage problem and solve for the optimal assignments of the first
stage, the same method can be used to solve for the optimal assignments of the remaining
stages.

In our notation we will index the parameters in each stage with the stage number.
Therefore for a T-stage problem the parameters in stage one will have an index of 1 while
those of the final siage will have an index of 7. The notation, wiiich is basically the same

as for the static problem except for the stage index, is as follows:

N % the number of targets (offense weapons),
M % the rnumber of defense weapons,

T %' the number of time stages,

{ . .
v, % the value of target i, i=1,2,...,N,
def

#i;(t)=  the kill probability of weapon j on target ¢ in stage ,
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i=1,2,...,N, j=12..,M,

gij(t)= 1 - p;;(t), the corresponding survival probability.

The decision variables will be denoted by:

7o = 1 if weapon 7 is assigned to target i in stage 1
Y71 0 otherwise.

The target state of the system in stage 2 will be defined as the set of targets which survive

stage 1. This state will b denoted by an N-dimensional binary vecter € € {0,1}V and

represented by

w=d 1 if target ¢ survives stage 1,
71 0 if target ¢ is destroyed in stage 1.
The weapon state of the system in stage 2 will be defined as the set of available weapons
after stage 1. This state will be denoted by an M-dimensional binary vector 4 € {0,1}¥

and represented by

w: = 1 if weapon j was not used in stage i,
771 0 if weapon j was used in stage 1.

Given a firsi stage assigr: aent, {z;;}, the target state at the stari of the sccond stage
is an N-dimensional random vector., The probabilivy that u; is 1 is the probability that
target ¢ survives the first atage. The probability that u; is 0 is the probability that target i

is destroyed in the first stage. The distribution of the random variable u; is therefore given

by:

M M
Prlu; = k] = k [T(1 - pi;(1))™ + [1 - &] {1 - 10 - mii(1))™ } ) (3.1)

j=1 i=1
for k=0,1, i=12,...,N.
Equation 3.1 will be called the target state evolution of the system.
The weapon state also evolves with time. This evolution is deterministic and depends
on the assignmenic made in the first stage. The evolution is given by:

N
wi=1-%zj  i=12...,M. (3.2)

=1
This simply says that weapon j is available in the second stage if and only if it is not used

in the first stage. Equation 3.2 will be called the weapon state evolution of the system.
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We will let F; (i, @) denote the optimal cost of a T — 1 stage problem with initial target
state 7 and initial weapon state . l.ote that this problem will be deiined in terms of
optimal costs for T — 2-stage problems, etc. Eventually the (T — (T — 1) or single stage
probiem will be defined in terms of optimal costs for 0-stage probleins. The optimal cost of
a O-stage problem will be defined as:

N
T (&, F) = EV.-u (3.3)
i=
In other words, the cost is simply the total value of the targets which survived the final

stage.

Problem 3.1 The Dynamic Target-Based problem (DTB) can be stated as:

min Fy = Y Prli = QF;(3, )
Fu GE{0,1}N
subject to  z;; € {0,1}, i=12,...,N ji=12,...,M,

N
with w; =1 - ZI,'J'.

=1

The objective function is the sum over all possible stage 2 target states of the probability of
occurrence of that state times the optimal cost given that state. The probability distribution
of the target state was given in 3.1. Note that the distribution of the stage 2 target state
and the stage 2 weapon state both depend on the first stag: assignment. The first constraint
restricts each weapon to be assigned at most once in the first stage. The second constraint
is due to the weapon state evolution.

This problem is considerably more difficult than the static one. This can be illustrated
by attempting to use a straightforward dynamic programming approach to the problem.
Let us consider a two stage problem. The number of possible weapon subsets that can be

chosen in the first stage is 2M. If m, weapons are us-d in stage 1 the number of possible
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assignments that must be checked is N™:. If N of the N targets are engaged in the first
stage the number of possible outcomes is 9% If N of the N targets survive stage 1 and my
weapons are available in stage 2 then the aumber of assignments thai must be checked to
obtain the optimal cost for this outcome is N ™2, These numbers show the enormous number
of computations that will be required if a straightforward dynamic programming approach
is used. Note thai to simply evaluate the expected value of a first stage assignment requires

a tremendous computational effort.

3.2 Unit Valued Targets and Stage Dependent Kill Proba-
bilities

In this section we will study the effect of stage dependent kill probabilities p(t) on the

optimal assignment. We will assume that the targets all have a value of unity and that the

kill probabilities p(¢) are independent of the weapons and the targets. We were not able to

obtain an analytical solution to this problem even for the case of two targets. However, we

were able to obtain resuits for the limiting case, as the number of targets goes to infinity.

We will first present some properties of the optimal solution.

Theorem 3.1 Consider the dynamic version of the Taryet-Based problem in which there
are T stages, N unit-valued targets, stage dependent kill probabilities p(t), and M weapons.
The optimal strategy has the property that the weapons to be used at each stage are spread

as evenly es possible among the surviving targets.

Proof: The proof is by contradiction. To simplify the notation we will denote the kill
probability for the first stage by p (instead of p(1)) and the survival probability by ¢ = 1 ~p.
Similarly we will denote the optimal number of weapons assigned to tar, 't ¢ in the first
stage by z;. Let us assume that assignment & is optimal but does not have the property
that the weapons are spread evenly among the targets. For convenience let us assume that

targets 1 and 2 are such that #; > z2 + 1. The remaining assignments z3,z4,...,ZN can

be arbitrary. Denote the exprcted cost for this optimal assignment by F*, We have

F* =g 20, 4 [g™ (1 - ¢°) + g™ (1~ @)Dy + (1~ ™ )(1 — ¢7*) Do (3.4)

. - i et i e an ¥ st b s e et 0 1 e 2 s s s v 8 e
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where
Dy 't he expected cost given that targets 1 and 2 are destroyed in stage 1,
D; ¥the expected cost given that either target 1 or target 2 survives stage 1,
D, the expected cost given that targets 1 and 2 both survive stage 1.
Now consider the assignment in which a single weapon is removed from target 1 and

reassigned to target 2. Denote the expected cost for this assignment by F. We have
F=g¢2 5D, 4 [g7 7 (1~ g+ 4 g2 (1 ¢ ) D1 + (1= ¢ ) (1 - 1) Do (3.5)
where Dy, Dy and D; are as defined above. We therefore have

F* - F

i

(1-q)(g™ -~ ¢~ )D1 4+ (1= g)(¢"* ™" ~ ¢**) Do

(1= q)(¢™* - ¢"*~')(Dy ~ D). (3.6)

By our assumption that z; > z9 + 1, we have ¢*? > ¢®1~!, Also, since Dy is the expected
cost given that either target 1 or target 2 survives and Dy is the cost if both are destroyed
then D; > Dp. This implies that the expression 3.6 is positive which implies that F* > I

which contradicts our assumption that the assignment with expected cost F'* was optimal. @

The above result simplifies the problem to be solved since we can use the number of
wepons to be usew - each stage, my, as the decision variabhle and optimize over this variable.
Given the optimal values of m,, the optimal assignment can be obtained by spreading these
weapons evenly among the targets. In the case of T = 2 the resulting problem is a one
dimensional opti ization problem since m; 4+ m; = M. Intutively we would expect the

-

o be a unimodal' funciion with respect to the number of weapons used in

nvre s bl &
EXPETIEQ TUBL

[

stage 1. However, this is not the case as we see in the following two-stage example,

Let us choose my, the number of first stage weapons, as the independent variable, We
will write the expected value if m; weapons are used in stage 1 and M — m; weapons
are used in stage 2 by Fj(my). The optimal solution can then be obtained by minimizing

Fi(m.) over the set {0,1,...,M}.

1See definition A.5.




g e

10-3 ¢ .
c 3
- 3
- 4
10-4é\ 4
: \ ]
- ~5L =
= i0 3 3
g - 3
— - / -
- i J
= e
i) 1.0"5; \ / 3
10-7L \\\\\\\\v//”\\ .
g ~ g E
C S 3
10-8 A Y 1
0 2 4 6 3 10 12 14

CHAPTER 3. THE DYNAMIC TARGET-BASED PROBLEM . 96

ml

Figure 3.1: A two-stage example in which the expected cost as a function of the number of
first stage weapens, F1(my), has multiple local minima.
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Figure 3.2: The log of the function Fy(m,) for the relaxed problem (solid) as well as for the
true problem (dashed) vs. the number of first stage weapons, m;.

If Fi(m;) was a unimodal function of m; then the above minimization could be done
efficiently by using a lccal search algorithm. Urfortunately, this is not the case as can be
seen in the follewing example. Consider the problem in which 7= 2, M = 14, N = 3 and
p(1) = p(2) = 0.2. In Figure 3.1 we have plotted log ¥1(m,) versus mq. We used a log scale
because the variations near the global minima are so small, that with a linear scale the
function “appears” vo have a single minimum. This suggests that for all practical purposes
any of the local minima will suffice. A local minimum can easily be obtain 4 by a local
search algorithm (i .e. repeatedly increase or decrease m; if doing so decreases the cost until

any change in m; results in an increase in the cost.
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The function Fj(m;) is not unimodal because of the restriction that weapons must
be assigned in integral quantities. Let us consider the problem in which the integrality
constraint is relaxed. In other words we will assume that the survival probability of each
target in stage one is given by (1 -~ p)ﬂﬁ‘. Also if k targets survive stage one we will assume
that the expected cost in stage two is given by k(1 — p)M—_km. In figur 3.2 we have plotted
the expected cost for this relaxed problem (the solid curve) versus the number of weapons
used in stage one. We also plotted the function for the case of the true problem, Fi(m;),
(the dashed curve). Note that the function of the relaxed problem is a lower bound for
the function of the true problem. This is expected since the set of feasible solutions of the
relaxeu problem includes the set of feasible solutions of the true problem. Note that the
function for the relaxed problem is unimodal. Also note that the optimal value of m, is
the same for both functions. This suggests that the relaxed problem can be used to find a
near-cptimal value for m;. There are two advantages to using the relaxed problem. First
of all, it is easier to solve because of the relaxation of the integral constraints. Secondly, if
the function is unimodal, as it is for this case, then the global optimal can be found v ith
the use of a local search algorithm.

Qur next theorem concerns the case in which the number of weapons is less than the
number of targets. Qur intuition tells us that a dynamic allocation should not perform any

better than a static one. This is indeed the case.

Theorem 3.2 If M < N, then the optimal strategy is to assign all of the weapons in the
stage with the highest kill probability.

Proof: This is of course true for the one stage problem. Let us assume that it is true
for the T ~ 1 stage problem. Now consider the T-stage problem. Suppose we assign m;
weapons in the first stage. We have my < M < N. By the induction assumption, all of the
remaining weapons will be assigned in one of the following stages, the stage with maximum

kill probability. This means that the problem can be reduced to a two stage problem. We
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will thereire assurae that T == 2. The <ost for this problem is given by

R(m) = Sob(jimy, )M - ma)(1 = p(2)+ (G + N - 1)

=1

= (M-m)1-p2))+m(1-p(1))+N-M

= N-Mp(2)+mp(2) B(1)]

Therefore if p(2) > p(1), then m] = 0; while 1+ p(2) < p(1), then m} = M. In the case
(1) = p(2), both solutions are optimal. Therefore for the T"-stage problem all weapons are

assigned in the stage with the maximum kill probability. =

The above theorem is not particularly enlightening. However, it allows us to concentrate
on the cases M > N. Our next result pertains to these cases. It states that,if M > N and
p(t) 2 p(t + 1) then the optimal assignment has the property m] > N. In other words the
optimal number of weapons to be used in the first stage is at least as big as the number of

targets.
Theorem 3.3 If M > N, andp(t) 2 p(t+1) fort =1,2,...,T -1, thenm] > N.

FProof: Note that the theorem is true for the case T = 1. Let us now assume that it is true
for the T — 1-stage prublem cnd show that it hoids for the T-stage problem. We will assume
that the weapons to be used in a stage are spread evenly among the surviving targets.

The following notation will be used. Let Fj(m;) denote the expected cost given that
m; weapons are used in stage | and that an optimal strategy is used for the remaining
T — 1 stages. Let F3(m, k) denote the optimal cost of the T — 1 stage problem given that m
weapons are available and that k targets survive stage 1. Assume that m; = m < N. Note
that

bl
Fy(m) = 3~ b(k;m, g(1))Fa(M — i, N ~ i + k)
k=0

By our assumptions, at least one target survives stage 1. Also at least one weapon is

assigned in stage 2. Choose any target i to which at least one weapon is assigned in stage
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2. Let z be the nuinber of weapons assigned to this target. Denote one of these weapons
as weapon r. We have:
Fo(M -, N—-r+k) = ¢(2)(Cost given that weapon r hits target) +
p(2)(Cost given that weapon r misses target).
The cost given that the weapon does not destroy the target is the same as the optimal cost
for the case with M -- m~ 1 weapons. The cost given that the weapon destroys the target is
the same as the optimal cost for the case of N —m+ k — 1 targets and M — m — 2 weapons.
Therefore
FsM-—-m,N-m+k) = q2)F(M-m-1,N-m4 k)
+p(2)FR(M - m -z, N —m+k—1).
The fact that z 2> 1 can now be used to obtain
F(M-m,N-m+k) 2 B(M-m—-1,N-m+k)
+p(2)[Fy(M ~m - L,N ~m + k- 1)
~F(M —-m-1,N - nm+ k)
We now nse the fact that p(1) > p(2) to obtain
Fy(M-m,N-in+k) 2 Fp(M-m-1,N-m+k) (3.7)
+p(D)[F(M ~m—-1,N-m+k-1)
- (M ~m~1,N -m+4 k)
Next note that by using an argument similar to that above we can show thai

R(im+1) = f: bk m, g()){F2(M —=m - 1,N —m + k) (3.8)
k=0
+p(V)[Fo(M =~ I,N -+ k~1) = Fo(M -~ 1,N — i+ k)]}

‘We therefore have

i
F(m) =Y b(k;m,q(1))F2(M — 1, N ~ i + k)

k0
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Substituting the inequality we obtained in 3.7 we have

F(m) > \_‘b(k my q(U)){F2(M - m ~ 1,N —m+ k) (3.9)

?r

-+p(1)[F2(M m—-1,N-m+k-1)-F(M-m-1,N - m+k)]
Now using the result obtained in 3.8 we have
Fi(m) 2 Fi(m +1)

This means that the expected cost can be decreased by increasing the number of weapons
used in the first stage. This process can be repeated to cenclude that the optimal number
of weapons to be used in the first stage must be greater than or equal to the number of

targets. @

The next theorem concerns the case in which the number of stages is large. One would
expect that if this is the case then at each stage one should assign a single wezpon to each
surviving target at that stage. If two weapons are assigned to a target at a stage and one
of them destroys the target then the other weapon has essentially been wasted. This result

is given in the following theorem.
Theorem 3.4 If7 > 1+ M-;—N, M>Nandp(t)y=p fort=1,...,T then o] = N.

Proof: Assume that m] > N. This means that there exists at least one target i with 27 > 1.
Suppose that we increase the number of stages by one. This additional stage will be¢ added
at the beginning and we will assign m}] weapons over two stages (instead of one). This
assignment will be as follows. In stage 1 a single weapon - r target will be assigned. In the
second stage z7 — 1 weapons will he assigned to target i whether or not it is destroyed in
stage one (i.e use an open loop strategy). Note that the expected cost of this strategy is the
same as for the orginal T-stage problem. Therefore, if we allow the weapons in stage 2 to be
assigned to any of the surviving targets then the expected cost can only decrease. In other

words, by increasing the number of stages by one we can decrease the cost by using at most
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P(2)=0.1 | p(2)=0.3 | p(2)=05 | p(2)=0.7 | p(2)=0.9
p(1) = 0.1 10 0 0 0 0
p(1)=03]| 20 10 0 0 0
p(1)=05| 20 16 10 10 0
p(1)=0.7] 20 18 10 10 10
p1)=08] 20 20 10 10 10

e

Table 3.1: Optimal values of first-stage weapons, m;, for different combinations of stage
dependent kill probabilities.

p(2)=0.1 | p(2)=0.3 | p(2)=0.5 | p(2)=0.7 | p(2)=0.9
p(1)=0.1| 8.0100 4.9200 2.5000 0.9000 0.1000
p(1) =03 | 4.9000 4.2784 2.5000 0.9000 0.1009
p(1)=0.5] 2.5000 2.3975 1.4334 .6496 0.1000
p{1)=0.7 | 0.9050 0.8924 0.4808 0.1625 0.0238

4

p(1)= 0.9 0.1000 | 0.1000 | 0.0410 | 0.0079 | 0.0005

Table 3.2: Optimal costs for various combinations of stage dependen. kill probabilities.

N weapons in the first stage. Therefore the aptimal solution must have this property. From
theorem 3.3 we know that at each stage at least one weapon should be assigned to each
target. These two results imply that in the optimal solution exactly one weapon should be
assigned to each target in stage one.

Note that the maximum possible number of stages is obtained in the case in which 2
targets survive stage cne and they survive all future stages. In this case the number of
stages in which weapons are available is given by 1 4 M_~2-.l! Hence if T is greater than this

number the probiem can be considered as having an infinite number of stages. ™

3.2.1 Numerical Results

Since there appears to be no analytical solution to the problem under the assumption of
unit-valued targets and stage dependent kill probabilities, we numerically computed optimal
solutions for a simple example. We computed the optiinal solutions for the case of M = 20
weapons, NV = 10 unit-valued targets and T = 2 stages for various kill probabilities. If we
denote the kill probability for the first stage by p(1) and that for the second stage by p(2),

then our solutions are for the cases in which p(1) = .1,.3,.5,.7,.9, p(2) = .1,.3,.5,.7,.9.
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Table 3.1 contains the optimal numbers of weapons to be used in the first stage (i.e. my).
Note that when p(2)/p(1) is large then m} is small while when p(2)/p(1) is small m] is
large. In certain ranges we find that my is very sensitive to p(2) and p(1). For example,
when the second-stage kill probability is p(2) = 0.9, then a change in the first-stage kill
probability p(1) from 0.5 to 0.7 results in the optimal number of first-stage weapons, mj,
changing from 0 to 10 which means a change from a static to a dynamic strategy.

Table 3.2 contains the optimal costs for the problems. Note that, given a choice between
using the wnore effective weapons in the first or second stage, it is always better to use them
in the first stage. For example, if p(2) = 0.9 and p(1) = 0.7, the optimal cost is 0.0238;
while if p(2) = 0.7 and p(1) = 0.9, the optimal cost is 0.0079. Another way of Jooking at
this property is the following. We computed (approximately) the derivative of the optimal
cost with respect to p(2) at the point p(2) = 0.8,p(}) = 0.8 to be -0.22. The derivative
with respect to p(1) at the same point is approximately -0.33. This implies that, given the
choice of improving the kill probabilities of either the weapons used in the first stage or the
weapons used in the second stage, one should improve the kill probabilities of the weapons

for the first stage.
3.2.2 The Limit of an Infinite Number of Targets

In this section we will censider what happens for very large numbers of unit-valued targets,
N. We will keep the ratio of weapaons to targets fixed and solve the problem in the limit as
the number of targets goes to infinity, We will find that, in the limit, the probiem can be
considered as a deterministic one in which the number of targets in a stage is the expected
number of targets which survive the previous stage.

Let us introduce the variable k, = . This is the number of weapons reserved for stage

t per initial number of targets. We will also define the vector £} € R for 1 <t < T by
f_C.t = [lit, LTEN I KT]T.

Note that the values of &, may not be optimal for the problem. We will address the

question of finding optimal values for k; in subsection 3.2.3. By theorem 3.1 we know that
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the weapons to be used in each stage should be spread evenly among the suzviving targets.
The expected cost of the T-stage problem with N targets and in which m; = %N weapons
are used in stage t will be denoted by Fi(N,&;). Let a denote the expected fraction, of the

initial number of targets, which survive stage 1 i.e.

X a= (1= (81— lsa)p(D])(L = p(1))l1). (3.10)
’ Note that o is independent of N. Consider the case of the static problem (i.e. T = 1). We
. have
| F; N,K ”n

. AR < [1 - (s = I DRI - B,

. . Taking the limit as N goes to infinity on both sides we get

Fu(N, K1)
N

lim =[1= (51~ [#:))P(2))(1 = p2)) = a. (3.11)

N-soo

In other words, for the static problem, if the weapon to target ratio is kept fixed then the
- expected fraction of targets which survive is the same for all values of N. This will also be
| the value in the limit as the number of targets goes to infinity. We will now show how the
limit of this ratio can be obtained for more than a single stage. The limit for the T-stage
problem will be obtained in terms of the limit for the T" — 1 stage problem, etc. Since the
limit for the case T' = 1 (the static problem) is well defined then the limit for the two-stage
problem is well defined etc. The T-stage limit is therefore well defined. The main result

will now be piesented.

Theorem 3.5 Consider the T-stage problem with N uni! valued targets, M = kN weapons

and stage dependent kill probabilities p(t). Assume that the number of weapens to be used
- in stage ¢ is given by my = kN, wher: k; € [0,&] is a fired constant which may be different

for each stage. We then have that

Fy(N, Ra/e) )

fim DR (3.12)

N —-00 N N—oco N ’

where a is given by equation 3.10.

B R — v

B T ————
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Procf: Let N represent the number of targets which survive stage 1. N; is a random
variable. If k; € R then it is a binomial randon: variable; otherwise, its distribution can be
obtained by the convolution of two binomial distributions. The mean and variance of this
distribution is given by:

E[N;] = N3 = aN,
Var[Nq) = o = AN,
where
B = )1 = (w1 = ka1 = g + (51 = w1 Ja(D(1 = g(1)121+1)]
Note that 3 is independent of N. For any p > 0 we have

Fi(N,K1) = Pr(|Ng— Nyj| > pN)E[Fa( N2, &2)||N2 — Nal > pN)

+ Pr(JNg — N3| < pN}JE{Fa( N2, R)|| N2 -- N2| < uN)}.  (3.13)

. By Chebyshev’s Inequality we know that
Pr(|Ny — Nof < uN) > 1 AN (3.14)
77 o & |
i Since F(N,,K,) is a monotonically increasing function of N3 then
E[FQ(NQ,EQ)”NQ - ﬁgl < /AN] < Fg(ﬁz -+ #N, E-;), (315)
and
E[Fy(N3.Ka)l|N2 = Ny| < uN] 2 Fa(N; - uN, &), (3.16)
and also
E[Fy(N2, 7)||N2 — No| > uN] < F3(N, 7)), (3.17)

Using 3.14 3.15, 3.16 and 3.17 in 3.13 we obtain

B

ﬂ Y 3 —
. (1 - ;'ZN')Fz(Nz—“#N,m)SFl(_N,,gI)SW

[F2(N,R2)] + Fy(Ny + uN,73)  (3.18)

Dividing by N and taking the limit as N goes to infinity we cbtain

lim Fa(Ny — uN,Ra) _ im F(N, ki) < lim F2(N2+uN,m).

N0 N T Neoo N T Ne—oo N

[
|
1
M
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Using the fact that N; = aN and taking p arbitrarily close to 0 we obtain

. R(N,&) _ . F(aN,&)
iy N R
Using a change of variables we finally obtain
. F](N"e;)_ . F?(Nv'q2/a)
NN O N

This completes the proof. &

Note that the theorem gives the limit of the T-stage problem in terms of the limit for a
(T - 1)-stage problem. The latter can be expressed in terms of the limit of a (T — 2)-stage
problem etc. The limit for the case T'= 1 is given in equation 3.11.

This limit provides us with a lower bound for finite values of N. This result is given in

the next theorem.

Theorem 3.8 Consider the T-singe problem with N unii valued targets, M = kN weapons
and stage dependent kill prebabilities p(t). Assume that the number of weapens to be used
in scage t is given by my = K, N, where K, € [0,K] is a fized constant which may be different

for each stage. We tl.-n have that

F](N,R:])

Fl(.N,E1) 2 N ‘llm (3.19)
N

=+Q0

Proof: Let k € R, be any positive integer. Consider the problem with &N targets and in
which m; = kx; N weapons are used in stage t. Let Fy(kN,&,) denote the optimal cost for
this problem. A sub-optimal solution for this problem is the following. Split the problem
into k subproblems. Each of these subproblems has iV targets and uses m; = kN weapons
in each stage. The optimal cost for the problem under this restriction is given by kFy (N, &y).

Since this solution is suboptimal we have:

Fi(kN,R1) S kR (N,Ry).




s g e 2 e s

CHAPTER 3. THE DYNAMIC TARGET-BASED PROBLEM 67

Dividing both sides by kN and taking the limit as k goes to infinity we have

R(N,R) _ . RENR) . FR(N,&)
——— > ———— ——
N 2 lim Jim I5

The result 3.19 now follows. &

Theorem 3.6 provides us with a lower bound on the optimal cost for the problem with

finite values of V. Theorem 3.5 is more easily understood if we look at some examples.

Exampjﬂ
Suppose that & = 2,k; = 0.5,k = 1.5 and p = 0.6. In other words the defense has 2N

weapons, N/2 weapons are used in stage 1 and the remainder are used in stage 2. The

expected fraction of targets which sarvive stage 1 is given by
1 -
a= -2-[(1—p)+ 1] = 0.7.

Therefore the expected value in stage 2 given that the expected number of targets survive

stage 1 is given by:
Fy(a,k3) = F3(0.7,1.5) = [(1 - p)® + 6(1 ~ p)*]/10 = 6.1024

Note that we had to scale the number of weapons and the number of targets by a factor of

10 so that there are an integral number of each. If we now use the theorem we cbtain:

i R(N,[5,15)

M N = 0.1024.

In words this says the following. For very large N, if 25% of the weapons are used in stage 1
then approximately 10% of the targets will survive both stages. For comparison, if a static
strategy is used then 16% of the targets will survive. If we consider the case of two targets,
N =2, *hen 13.12% of the targets will survive both stages. Note that even for the case of

N =2 the limiting value provides a good approximation. This approximation gets better

as N increases.

i, P 10,70 1 3 v g AL, Attt e s e — e —
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Exampl 2
Suppose that x = 2,x; = 1,k3 = 1 and p =1~ } for some k € R. In this case a = (1 - p)
so that
Fa,k3) = B((1-p),1) = Q—-_E—BK
Therefore
lim Fy(N, 1,1 _ (- p)* = _p)f—:l,.

N—oo N k

Let us now consider the case of a three-stage problem.

E ample 3
Consider the 3 stage problem with x = 3,Kk; = 52 = k3 = 1, and p = 0.5. In the limit the

expected fraction of targets which survive stage 1 is % The expected fraction whirh survive

stage 2 is } and the expected fraction which survives stage 3 is . Therefore

: lim Fl( 1[1’1’11)

— o—11
N=rco N =2 )

Let us now consider a case with stage dependent kill probabilities.

Example 4
Suppose that /i = [1.5,1,.5] a- d that p(1) = .6,p(2) = .5,p(3) = .4. The expected fraction

of targets which survive stage 1 is given by
a = 0.5{(1 - p(1)) + (1 - p(1))?] = 0.28.

The expected fraction which survives siage 2 is the solution to a static problem with 0.28
targets and 1 weapon. To find the limit for this problem we find the cost for the case of 7

targets and 25 weapons (i.e multiply by « ) and divide the cust by 25. We obtain
a = [4(1 - p(1))*) + 3(1 - p(1))%]/25 = 0.025.

The expected fraction which survives the final stage is the solution to a static problem with

0.025 targets and .5 weapons. Multiplying the parameters by 46 etc. we obtain

a=(1-p(2)%/40 = 9.1 x 10~".
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Therefore in the limit as the number of targets goes to infinity, the expected fraction of the
initial number of targets which survives all stages is 9.1 x 10~7.

Theorem 3.5 is important because it allows us to compute approxirnate costs for the.
case of large N. We will show that this approximation is very good if N > 100. Theorem

3.6 says that this limit provides a lower bound on the cost for finite values of N.

In words theorem 3.5 says the following. Let us suppose that the number of weapons
reserved for a stage is linearly dependent on the initial number of targets N. Therefore,
as we increase the number of targets, the number of weapons in each stage will increase at
the same rate. As we increase the number of targets, the expected number of targets which
survive the final stage will also increase. Let us instead consider the ratio of the expected
number of surviving targets and the initial number of targets. We will refer to this as
the ezpected surviving fraction of each target since we can obtain the expected number of
surviving targets by multiplying this ratioby N. We can compute this ratio in the limit of an
infinite number of targets N by solving a related deterministic problem. This deterministic
problem is obtained as follows. Let us suppose that at each stage the number of surviving
targets is equal to the erpected number of surviving targets. Pick the initial number of
target IV so that the exepcted number of surviving targets at each stage is integral. Using
this value of N we evaluate the expected surviving number of targets at the end of the finai
stage of the deterministic problem in which, at each stage the expected number of surviving
targets survive the previous stage. The ratio of the expected number of surviving targets
for this problem and the initial number of targets N is the same as the ratio, in the limit
as IV goes to infinity, of the expected number of surviving targets and the initial number
of targets. Note that the former ratio is obtained by solving a deterministic problem while
the latter ratio must be obtained by solving a stochastic problem for an infinite number of
targets. This limit provides a low=: bound for the ratio for finite values of N. Furthermore,

it provides an approximate answer for large values of N. An interesting question is how
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Figure 3.3: The ratio of the expected two-stage cost and the initial number oi targets N
vs. N for p(1) = 0.6,p(2) = 0.7; N weapons are use: in each stage.
large does N have to be for the approximation to be good.

In order to address this questicn we have done the following. We have considered
the problem of two stages T = 2 with M = 2N weapons. N weapons are used in each
of the stages (i.e. K = [1,i]). We computed the exact value of the ratio E‘—(‘—Q’;—z—‘l for
N =10,20,...,150, and also in the limit as NV goes to infinity. In figure 3.3 we have plotted
this ratio for finite values of N as well as the ratio i the limit of infinite N. In this case
we used a second stage kill probability of p(2) = 0.7 and a first stage kill probability of
p(i) = 0.6. Figure 3.4 contains plots of the ratios for the case of p(1) = p(2) = 0.5. Figure

3.5 contains plots of the log of the ratios for the case of p(1) = p(2) = 0.7. Note that in each
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Figure 3.4: The ratio of the expected two-stage cost and the initial number of targets N
vs. N for p(1) = p(%) = 0.5; N weapons are used in each stag: .
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of the cases the difference between the limiting value and the value for finite NV is small for

N > 100.

3.2.3 Optimal Number of First-Stage Weapons for a Two-Stage problem
with a Large Number of Targets

Note that in the discussion in the previous subsection the number of weapons to be used in
each stage was fixed. In this section we will find optimal values for K as N goes to infinity.
This will give us a good approximation to the optimal solution for large values of N.

We will only consider the two-stage case, T = 2. The optimization could also be
attempted for 7' > 2, but it is doubtful whether one can find an analytical solution for such
cases. For the case T' = 2 we know that k3 = K — K since all remaining weapons are used
in the second stage. We therefore have a one dimensional optimization problem. We will

let ky be the free variable. The optimization problem can be stated as:
min Fo(a, & — k) (3.20)
"y

subjectto K € [0,K]
where
= [1= (k1 = [ ])P(D) = p)L,
The function Fy(a,k2) is given by:

Fy(er, k3) = [0 — p(2)(w2 ~ QL%.J Ya(2)L 2,

This expression is difficult to optimize. However, if the integrality constraint is relaxed,

then the expected cost is given by aq(2)%=2. Since this is a lower bound for the non-relaxed

problem, then

Fy(a,k) > aq(2) . (3.21)

This + iates that the solution obtained by allowing fractional assignments in the second stage
is a lower bound to the solution in which only integral assignments are allowed. Note that

if 22 € Z, then equality holds in expression 3.21. Therefore, if the solution to the problem

Ty ———— ™ i A st sy o sty Y Y pountsamZ  svememans wox mag x vog pane
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using the lower bound as the objective function is a multiple of a then it is optimal for the
true problem.

The cptimization problem using the lower bound in 3.21 as the objective function can
be stated as:

n}in aq(2)::a:"‘. (3.22)
1
subject to K € {0, k]
where
a = [1- (k= [ ])p{))(1 - p(1))id
Let us first consider the case x = 1. Note that theorein 3.2 has already provided us with

a solution for this case. The solution is simply that all weapons should be assigned in the

stage with the higher kill probability. Therefore,

kK1 =0 for (1) < p(2) (3.23)

k1 =1 for p(1) 2 p(2) (3.24)

Let us now consider the case in which k = 2, i.e. a 2:1 weapon to target ratio. Using

straightforward calculus one can show that the optimal values of x; are given by

k1 =0 for ) < Tog(1 — p(2)) (3.25)
=1 f 2
=t for e 2 el = 2(2) 2 2(0) (3.26)
ki=12 for -1 = (3.27)

WDl - p(1)] * Tog(1~ #(2))
Note that if l—_-me € X then equality holds in 3.21. If this is the case then &} is optimal for
problem 3.20. Otherwise &} is approximately optimal.

In the plot in figure 3.6 the vertical axis represents the kill probability in stage 1 while
the horizontal axis represents the kill probability in stage 2. In each region we have indicated
the optimal value of m;, the number of weapons allocated in the first stage (recall that m} =
x]N) for the kill probabilities in that region. For example, consider the case p(1) = 0.8, If

0 < p(2) < 0.15 then it is optimal to use all weapons in stage 1. If 0.15 < p(2) < 0.55 then
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Figure 3.6: Optimal number of first-stage weapons, m,;, for various kill probabilities with
M = 2N weapons, in the limit of an infinite number of targets, N,
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the optimal number of weapons to be used in stage 1 lies between N and 2N. If p(2) > 0.55
it is optimal to use half of the weapons in stage 1.

Note that for 0.6 2 p(i) £ 0.9 and 0.6 < p(2) < 0.9 it is optimal to use half of the
weapons in stage 1. This implies that for the problems of interest to us (i.e large-scale
problems with kill probabilities greater than 0.6) it is optimal to use half of the weapons
in stage 1, even if the kill probabilities are different in each stage. This insensitivity of the

optimal strategy to the kill probbabilities is very interesting. We should stress that this

result is valid for large numbers of unit-valued targets and weapons

3.3 Unit Valued Targets and a Uniform Kill Probability

In the previous section we considered the case of stage dependent (but weapon and target
independent) kill probabilities. In this section we will, in addition, assume that the kili
probabilities are stage independent. We will assume that all targeis have the same value and
that the kill probability is the same for all weapon-target pairs in all stages. Without loss of
generality we can assume that all targets have a value of unity. Under these assumptions we
have shown (theorem 3.1) that the optimal strategy has the property that the weapons to
be used at each stage must be spread evenly among the surviving targets, (Note that if the
targets had unequal values then one would need to find the individual target assignments).
Therefore the only decision variable is the number of weapons to be used in the present
stage. Given this number, the optimal assignment for the present stage is obtained by
spreading these weapons as evenly as possible among the surviving targets. The weapons
are fired and the process is repeated. Ir this section we will present the optimal solution
to this problem for the case of two targets. We will also present the solution in the limit

as the number of targets goes to infinity (while keeping the weapon to target ratio fixed).

These results will be used to compare dynamic and static strategies.
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3.3.1 The Case of Two Targets

" In this subsection we will make the additional assumption that N = 2. Although this is
a simple problem, it has provided us with valuable insight. In the following theorem, we
will show that, in the optimal strategy, the weapons are spread as evenly as possible among
the stages left. Note that this theorem also holds for the case in which the targets have
different values. Once the number of weapons to be used in the first stage is known the
optimal assignment of these weapons to targets must be compnted. We will see that this

assignment can be obtained by solving a static problem.

Theorem 3.7 An optimal strategy for the special case of the Dynamic Targei-Based prob-

lem tn which N = 2 and p;(t) = p is as follows. Let 1 and Z; denote the optimal assignrnent
of the two-target static problem with the same target values and kill probabilities as the dy-

‘ namic problem but with L#] weapons. The optimal decision variables for the dynamic

problem is given by =] = Z{,13 = I,m] = [%J
Proof: We will first prave the following lemma.

Lemma 3.1 If the number of weapons to be used in the present stage is fized then the opti-
mal assignment of those weapons is the same as the optimal assignment of the corresponding

stetic problem with the same number of weapons.
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Proof of Lemma: Let us define ¢ by ¢ = 1 — p. Denote the optimal cost of the t-stage
problem with M available weapons by F7_,,(M). Therefore the optimal cost for the T
stage problem will be denoted by FT(M). Let z; denote the number of weapons assigned
to target 1 in stage 1 and let z dencte the number of weapons assigned to target 2 in stage
1. Note that if one of the targets is destroyed in the first stage, then it is optimal to assign
all of the remaining weapons to the other target in the second stage. Therefore, the cost

FT(M) can be obtained recursively by solving the following problem:

F(M)= min, {g*(1- ¢V +¢7 (1= g )Va}g" ="

Iy,T2

+q@ I FN(M -z — 13), (3.28)

subject to z1+ 23 < M, z; € Z4.

If the number of weapons to be used in the first stage is restricted to m;, then the optimal

cost, ander this restriction is given by:

Fi(M) = { min )q””f‘;(M ~1iy) = (Vi 4+ Vo)g™ + ¢M™ [Vig™ + Vag™].  (3.29)

£y +ra=rhy
Note that this can be written as:
(M) = qM F(M = my) — (V) + Vy)gM 4 g™ { min _ [Vig™ + qu"’]} (3.30)
{r1tza=im}
Now 1otice that the optimal values of the decision variables z; and z2 can be obtained by
solving the corresponding static problem with m; weapons. This complete the proof of the
lemma. O
Therefore, if we denote the optimal cost for the static version of the problem with M
weapons by F,( M) then, if the nuinber of weapons to be used in the first stage is restricted

to fhy, we have:

F{(M) = g™ F;(M - 1) - (Vi + Va)g" 4+ g™~ F (). (3.31)

Similarly we can restrict the uumber of weapons to be used in stage 2 tu 7y and write F¥

in terms of Fy. This value can then be substituted in 3.31. This process can be repeated
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for all stages. If we denote the optimal cost given that the weapons per stage is restricted

AN to m by F;(M,m) thea we obtain (by induction)

‘1’ -

S A(M,m) =Y ¢M ™ Fy(m,) - (T - 1)(Vi + Va)g™. (3.32)
’ t=1

! The optimal number of weapons per stage can now be obtained by minimizing Fy(Af, )
over m. Given these cpiimal values, lemma 3.1 may then be used to obtain the opti-
nial assignments. The optimal solution can therefore be obtained by solving the following

problamn:

(M) = mﬁi‘n F(M,m), (3.33)

T
subject to Z my = M
t=1

We will solve this problem by applying theorem B.1. To do this we need to show that the
lonction F1{ M, i) satisfies the conditions required to apply the theorem. This can be done

by showing tl.at the function ¢M~™ F*(m,) is convex. We will state this result as a lemma.

o Letama 3.2 he function ¢M =™ F(m,) is a convez function of m,.

Proaf: b proof of this lemma is straightforwarward but Jengthy. We have included it in

Appvoux 8, U

If we =pply theorem 5.1 we will find that the optimal solution has the property that

the wiapons are spread as weeniy as possible among the T’ stoges. Therefore, an optiiaal
stravesy for tile present suge is to use [%1] of the weapons and to assign these weapons

35 they woulid be assigned for tie correspending static problem. This completes the proof. ®

-
1
) '{heorem 3.7 is an interesting result because we find that the weapons are spread evenly
&
i"d : * [
et among the stages. We will n~wv compute the cost of ¢° . utimal strategy. Define the
N
a following variables:
: il i
\‘ . Ty B '—% } ,
: el M
L‘.“ m - f-?- Iy

4 oin . wominn
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def
o =B,

iy = IZ’}fAJ,
za ¥ [m,
Tow =[5

Using the results from theorem 3.7 it can be shown that the optimal cost Fy () for the

case Vi = Vo = 1 is given by:
F{(M) = (M — Tmy){g™™ 4 ¢] + (Tm, — M)[¢™ + ¢™] - AT - )gM.  (3.34)

In the special case in which M = 2kT for some positive integer k (i.e. if the two targets
survive all stages then in each stage k weapons will be assigned to each of them), the optimal

cost can be simplified to
Fr(M) = 2[TgM* — (T - 1)¢M). (3.35)

Note that if the number of stages is large then Fy(M) = 2¢™. The optimal cost for the
static problem with M weapons is 2q¥. This implies that roughiy half as .1.any weapons
are required for the dynamic case to produce the same optimal cost as for the static one.
The comparison of the dynamic and static strategies in terms of the number of weapons
saved wil discussed in more detail in subsection 3.3.3.

Let us . note the op:imal cost for the dynamic two-stage problem using M weapons by
F7(M). Let us denote the optimal cost for the corresponding static probiem by F;(M). In
figure 3.7 we have plotted the log of the ratio of the optimal two-stage cost to the optimal
static cost, log{# (M )/ F,(M)], {or differeni values of tutal weapons M = 4,8,12,18, 26,
versus the kill probability p. Note that the ratio decrcases as p increases 2s w.a1 as when M
increases. This means that as either the number and/or the effectiveness of the defensive
weapons increase, the advanage of using a two-stage dynamic “shoot-look-shoot-..." type

of strategy also increasss.

1.2t us denote the optimazl cost for the dynamic T-stage problem by #*(T). In figure 3.8

we have plotted the log of the ratio of the optimal dynamic and static costs log[F*(T")/ F*(1))




CHAPTER 3. THE DYNAMIC TARGET-BASED PROBLEM 81

100

10—3 b

10-4} \\ |
M:=20

log[FA(M)\Fs{M}]

16-5}F C

10-8; 1

10—7! L L L 1 1 L 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.7: Log of the ratio of the optimal two-stage dynamic cost and the optimal static
cost vs. the kill probability p for different weapon totals, M = 4,8,12,16,20, (N = 2).
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Figure 3.8: Log of the ratio of the optimal T-stage dynamic cost and the optimal static cost
vs. the kill probability p for difierent stages T = 2,4,8 with M = 16 and N = 2.
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versus the kill probability p for different number of stages T = 2,4,8. The number of
weapons is kept fixed at M = 16. It can be shown that for T > M /2 the optimal dynamic
cost remains constant. In other words, the inclusion of additional stages does not improve
the optiral cost. Note that the cost improvem~nt of the dynamic model improves with the

number of stages (up to a point) and with the kill probability.
3.3.2 Numerical Rest Its

In this section we will consider the case of N equally valued targets with a uniform kill
probability for all weapon-target pairs and all stages. In the previous subsection we con-
sidered the case of two targets N = 2. In section 3.2 we considered the case in the limit
of an infinite number of targets N = oo. For general N there does not appear to be an
analytic solution to the problem. One must therefore compute solutions numerically. In
this section we will compute the solutions for some simple cases and use the :esults of the
pruvious sections to provide bounds.

Theorem 3.1 states that, in the optimal strategy of this problem, the weapons to be used
in each stage should be spread evenly among the surviving targets. The decision variable
wiil therefore be the number of weapons to be used in the first stage, m;. The remaining
weapons are used in stage two. Given the optimal values of m; the optimal assignment
can be obtained by spreading these weapons evenly among the targets. The expected cost
for the T stage problem in which m; weapous are used in the first stage will be denoted
by Fi(m;). We computed optimal solutions for a two :tage problem with N unit-valued
targets, M weapons and & single kill probability p for all weapon-target pairs and both
stages.

Table 3.3 contains the optimal values of m; for the cases p = 0.9, M = 2,...,25, and
N = 2,...,10. The cases for which M is a multiple of N is written in boldface type. An
interesting feature to note is that if N < M < 2N then the optimal value of m; is N. Note
that this is not true for M = 2N as can be seen from the case M = 14, N = 7. For M > 2N

the optimal values of m; are close to M /2 but tend to be a multiple of N.
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M[N=2 =3|N=4|N=5|N=6|N=7|[N=38§ =9 [N =10
2 2 2 2 2 2 2 2 2 2
3 2 3 3 3 3 3 3 3 3
4 2 3 4 4 4 4 4 4 4
5 2 3 4 5 5 5 5 5 5
6 3 3 4 5 8 6 6 6 6
7 4 3 4 5 6 7 7 7 7
8 4 4 4 5 6 7 8 ) ]
9 5 5 5 5 6 7 8 g 9
10| 5 6 4 5 6 7 8 "9 10
11 6 6 7 5 6 7 8 9 10

1 12| 8 8 8 6 ) 7 8 9 10

' 13 7 7 8 7 7 7 8 9 10

; 14 7 8 8 10 6 8 8 9 16
15| 8 ) 9 9 6 7 8 9 16|
161 8 9 8 10 12 7 8 9 10
17| 9 9 8 15 11 8 8 9 10

. 18] @ ) 12 10 12 14 8 ) 10 |

j 19| 10 11 12 10 12 13 10 9 10

'; 20| 10 12 12 10 12 14 8 9 10

: 21| 11 12 12 11 12 14 15 9 10
22 | 11 12 12 10 12 14 16 10 10
23| 12 13 13 15 12 14 16 11 11
24 | 12 i4 12 14 12 14 16 18 12
251 13 15 15 15 13 14 16 1% 10

Table 3.3: Optimal number of first stage weapons for a two stage problem with a uniform
kifl probability of p = 0.9.
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)
2
n

M|N=2|N=:|N= =5 N=6|N=7|N=8/N=0IN=10

. 2 2 2 2 2 2 2 Z 2
) 3 2 3 3 3 3 3 3 3 3
X 4| 2 3 4 4 4 4 4 4 14

. 5, 2 k] 4 5 5 3 5 TR
KREE 3 4 5 6 6 6 6 6

v 7 4 3 4 5 6 7 7 7 (N
’ 8 | 4 4 4 5 6 7 8 8 | 8
, 9 5 5 5 5 6 7 8 9 9
: 101 6 6 4 5 6 7 3 ) i0
e 1l 8 6 7 5 6 7 8 9 10
4 12] 8 8 B 6 ] 7 3 g 10
13| 7 7 8 7 7 7 8 9 10
it 1] % 8 8 19 6 7178 5 [ 10
15| 8 9 9 10 9 7 8 9 10
16| 8 9 8 10 10 7 8 9 1C
17 9 9 11 10 11 g 8 9 10
: 18] 0 10 17 10 12 12 8 | ® 10
- 19| 10 11 12 10 12 13 9 9 10
20| 10 12 12 10 12 14 12 9 10
G 21 | 1l 12 12 il 12 14 15 9 10
b 2 11 12 12 14 12 14 16 10 10

23] 12 13 13 15 12 14 15 15 11|
24| 12 14 12 15 12 14 16 16 12
25] 18 1 15 15 15 13 14 16 17 13

Table 3.4: Optimal number of first stage weapons for a two stage problem with a uniform
kill probability of p = 0.5.

Table 3.4 coutains the optimal values of m for the cases p = 0.5,M = 2,...,25,
i and N = 2,...,10. We aguin find that 2 good approximatiop 19 the optimal value is

my = N for M < 2N and mj] = :.';t for M > 2/N. Note that these optimal values do not

increase monontonically with the number of weapons as can he seen in the case N == 4 for
M = 22,23,24. Here the optimal values of my are 12,13,12 respectively. This is due to the

o discrete nature of the problem.
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MIN=2N=3|N=4|[N=5|[N=6|N=7[N=8[N=9T "=10
2 2 2 2 2 2 2 2 2 2
3 2 3 3 3 3 3 3 3 | 3
4 2 3 4 4 4 4 4 4 4
5 2 3 4 5 5 5 5 5 5
6 3 3 4 5 8 6 6 6 6
7 4 3 4 5 6 7 7 7 7
8 4 4 4 5 6 7 8 8 8
9 5 5 4 5 6 7 8 8 9
0] & 6 4 5 6 7 8 9 10
11 6 6 5 5 6 7 8 9 10
12] 6 6 6 5 6 7 8 9 10
13 7 7 7 5 6 7 8 9 10
14 1 8 8 8 6 7 8 9 16
15 8 ) 8 9 7 7 8 9 10
6] 8 9 8 10 8 7 8 9 10
17 9 9 8 10 9 7 8 9 10
18] 8 9 9 10 10 8 8 9 10
i 1] 0 10 11 10 11 9 8 9 10
20 | 10 11 12 10 12 10 8 9 10
‘ 21 11 12 12 10 12 11 9 9 10
22| 11 12 12 10 12 12 10 9 10
23| 12 12 12 11 12 13 11 ) 10
24 | 12 12 12 14 12 14 12 10 0
251 13 13 13 15 13 14 13 11 10
Table 3.5: Optimal nui.ber of first stage weapons for a two stage problem with a uniform

kill probability of p = 0.1.

) Table 3.5 are results for the cases p = 0.1, M = 2,...,25 and N = 2,...,10. Note that
! in most physical situations the kill probability will not be as low as 0.1. However, we wanted

to investigate how the optimal values of my changed with the kill probability. We found

5 that for p = 0.9 and » = 0.5 the optimal strategy was to use roughly half of the weapons
s in stage 1. Therefore if there was a dependency on p we believed that it would show up for
the case p = 0.1. However, for this case as well we find that the opi nal strategy is again
to use roughly half of the weapons in stage 1 if M > 2N.

Observe that, for all cases except one, the optimal value of 12y for the case M = 2N is
N . Therefore: if the weapon-target ratio is 2:1 then it is optimal to use half of the weapous

in stage 1. Recall also that {or the case N = 2 and for large values of N this was the optimal
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thing to do for a 2:1 weapon-target ratio.

Note that the optimal value of m; tended to be a multiple of N. This tendency seems
to be gr:ater for the higher kill probabilities. For example consider the case M = 25 and
N = 9. For a kill probability of 0.9 it is optimal to use 18 weapons in stage 1. Therefore two
weapons are fired at each of the targets in stage 1. On the other hand if the kill probability
is 0.1 then the optimal strategy is to use 11 weapons in stage 1 which is roughly half of the
weapons.

Our conclusion is that it appears that a near-eptimal solution to the two-stage problem
is to us. half of the weapons in stage 1 if the kill probability is small. If the kill probability
is large then an approximate solution is to use the number of weapons in stage 1 which is
the smallest multiple of N greater than M/2.

Figure 3.9 is a plot of the ratio of the optimal dynamic two-stage cost to the optimal
static cost versus the kill probability p with a 2:1 weapon to target ratio (i.e M = 2N).
We have plotted the cases N=2,4,5,8 and 10. We have also plotted the ratio in the limit
as N goes to infinity. Note that this provides a lower bound for the case of finite N.
Here we see that, as the sizes of both offensive and defensive stockpiles incicase, the cost
advantage of the dynamic strategy increases. This implies that, for large-scale problems,
the dynamic shoot-iook-shoot strategy will have a significant cost advantage over the static
one. However, we also note that the increase in the cost advantage decreases with N.
Therefore, if the number of targets IV is very large it might be better to split the problem
into two smaller problems. This increases the optimal cost slightly, but greatly reduces the
complexity of the problem.

Figure 3.10 contains a plot of the ratio of the optimal two-stage cost to the optimal
static cost versus the number of weapon:; M with a kill probability of p = 0.5. We have
ploited the cases N=2,4,6,8 and 10. Note that the cost advantage of the dynamic strategy
increases roughly exponentially with the number of weapons. This implies that the dynamic
strategy is significantly hetter even for relatively small weapon to target ratios.

Figure 3.11 contains a plot of tle ratio of the optimal dynamic and static costs versus
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Figure 3.9: Ple’ of the ratio of the optimal dynamic (two-stage) and static costs vs the kill
probability for a 2:1 weapon-target ratio, (N = 2,4,6,8,10,0).
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Figure 3.10: Plot of the ratio of ihe optimal dynamic (two-stage} and static costs vs. the
number of weapons M, for different numbers of targets N =2,4,6,8,10, with p = 0.5.
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Figure 3.11: Plot of the ratio of the optimal dynamic and static costs vs the number of
stages, T, available; M/N = 2 and p = 0.5, (N = 2,3,4, o).
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the number of stages T'. We used a 2:1 weapon to target ratio and p = 0.5. The cases
N = 2,3 and 4 were plotted as well as the limiting case as N goes to infinity. The latter
plu. provides a lower bound for all cases of finite N. Using theorem 3.5 we can show that
in the limit as vV goes to infinity the ratio of the T stage cost to the static cost is 2qual to
27,

Note that the advantage of the dynamic strategy increases with the number of stages.
For finite values of N the advantage increases up to a finite number of stages. Beyond
this point the advantage remains constant because there are not enough weapons to make
use of the additional stages. Note that, for large values of N, most of the improvement
is obtained for a small number of stages (approximately 5 for this example). For a kill
probability of 0.8 most of the improvement will be obtained for three stages. Recall that
the computational complexity of the problem increases exponentially with the number of
stages. This suggests that the defense should use a small number of stages in its strategy
(roughly 3) since this provides a significant increase in performance over the static strategy
and the computational complexity is not too great.

The above results indicate that the dynamic strategy offers a significant cost improve-
ment over the static strategy but with an increase in the problem complexity. This im-
provement increases with the size of the problem as well as with the number of stages. We
believe that by using sub-optimal algorithms for the dynamic problem one can obtain a

significant cost improvernent with only a moderate increase in problem complexity.
3.3.3 Comparison of Dynamic and Static Strategies

We have seen that the use of a dynamic strategy can significantly decrease the expected
number of surviving targets. However, we have alsc seen that thc complexity of such
a strategy is much greater than that of the static strategy. One must therefore decide
whether the cost improvement of the dynamic strategy is worth the increase in the problem
cornplexity. This decision is of course dependent on the problem heing solved and on the

cornputational resources available for solving it. In this section we will provide another view
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of this trade-off which can help in making the right decision. We will show that by going
to a dynamic strategyv the defense can effectively double its arsenal of weapons. In other
words, half as many weapons (with the same effectiveness) are required for the dynamic
strategy to obtained the sarae cost performance as the static one.

For a given problem one can further reduce the optimal cost by either increasing the
number of stages while keeping the number of weapons fixed or increasing the number of
weapons while keeping the number of stages fixed. Suppose that M weapons are available
and that the optimal static cost is given by F,(M). Now consider the situation in which the
number of stages T is large?. Let My be the number of weapons which, if used in a dynamic
strategy, results in an optimal cost of Fy(M). In other words, let Fy(My) = Fy(M). One
can then compare M and M, to decide on whether to use a dynamic strategy or increase
the number of weapons.

In the case of N = 2 we have shown (section 3.2.1) that if the number of stages is large
and M = 2T, then the optimal dynamic cost Fy(M) = 2(1 — p)M. The optimal static cost
is given by Fy(M) = 2(1 - p)%l'. Therefore in this case My = %1 In other words, half as
many weapons are required 10r the dynamic strategy to obtain the same optimal cost as
the static one.

Let us now consider the case for large valnes of N. Let M = kN for some k € R. The
optimal static strategy is to divide the weapons equally among the targets. Therefore, the
optimal static cost is given by

F(M)=N(1-p)~

Let us now consider the dynamic problem. Ir theorem 3.3 we showed that if the number of
stages is large then the optimal strategy at each stage is to assign a single weapon to each
of the surviving targets. If NV is large then we know, by theorem 3.5, that the problem can
be treated as a deterministic one in which the number of targets in a stage is equal to the

expected number of targets that survive the previous stage. If a single weapon is assigned

2Recall that increasing the pumber of stages beyond the number of weapons cannot improve the optimal
cost.
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to each target in stage 1 then the expected number of surviving targets is N(1 - p). If a
o single weapon is assigned to ea~h target in stage 2 then the expected number of targets
which survive stage 2 will be N{1 — p)?, etc. Therefore, we can use theorem 3.5 to show

. tnat, after T stages

- . Fa(My) T
§ lim =24 _ (1 - p)T.

5 im —= (1-p)

N—oo
Therefove if N is large then Fy(M;) ~ N(1 - p)T. We now need to compute the number of

weapons used. Again, for large N it can be shown that

My =NOU+(-p)+--+(1-p7T"
= N [l

|
_ i If we now equate the optimal static cost with the optimal dynamic cost we obtain T = .

Therefore
M___
My 1-(1-p)
[ We stress that this result is only valid for large values of N and equal valued targets. Let

us look at some special cases:

- k=1: If k = 1 then MM., = 1. Since T' = k = 1, this implies that the dynamic strategy 1s a
|
|

single stage problem which is the static problem. Therefore, the result is correct.

P = 0: As p tends to 0, HE converges to 1. Again this is correct since the optimal cost in

\ both cases goes to N.

; p=1: As p tends to 1, ﬂ; converges to k. Note, however, that if p = 1 then the ratio
: should be 1 since both strategies can destroy all targets with N weapons. If M = N

| then k = 1 so the ratio tends to 1 as required.

Kk = oo: If k is large, so that (1 - p)% << 1, then f;”: == kp. Here we see that the defensive

advantage grows with the number and effectiveness of the weapons.
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Let us consider a typical preblem with a 2:1 weapon to target ratio and a kill probability

of 0.8. In this case

Therefore, for typical problems with a large number of targets, roughly half as many weapons
are required for the dynamic strategy to produce the same optimal cost as the static one.
Recall that the same was found to be true for the case of two targets. We can therefore

conclude that for most problems the ratio is roughly half.

3.4 Weapon Independent Kill Probabilities

In this section we will study the T'wo-stage Target-Based problem with the sole restriction
that the kill probabilities are independent of the weapons. In chapter 2 we showed that the
MMR algorithm produced the optimal assignment for the static version of this problem.In
this section we will find that a MMR-type algorithm produces the optimal solution for the
case of two targets.

The following notation will be used for the problem. The definitions of all additional

notation can be found in Appendix A.

N % the number of targets (offense weapons),

def
M = the number of defense weapons,

Vi % the value of target 1, i=12,...,N,
def

pi(1) = the kill probability of a weapon on target i in stage 1,
p.-(2)d§r the kill probability of a weapon on target i in stage 2,
my 4" the number of weapons used in stage 1,

my 4’ the number of weapons used in stage 2, (my + mq = M),
T < the number of weapons assigned to target i in stage 1,

- def

= the N dimensional vector [zy,...,zn]T.

The vector i € {€,1}" will be used to represent the state of the targets after the first stage.
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The states will be denoted as follows:

U =

1 if target 1 survives stage 1
0 if target 7 is destroyed in stage 1

If the state of the targets after the first stage is @, and the number of weapons available for

the second stage is mo, the optimal cost for the second stage will be denoted by Fy(m,, ).

For the dynamic problem two things must be decided, (a) the optimal number of weapons

to be used in the first stage, m;, and () the optimal assignment of these weapons to tha

targets, £. Note that, given the number of weapons to be used in the first stage and the

assignment of these weapons to targets, one can compute the expected cost, under the

assumption that the optimal assignment is ured in the second stage. Let Fi(m;,Z) denote

the expected cost if m; weapons are used in the first stage with a first stage assignment

given by ¥, We have:

N

F(my,£) = Z {H{u;q.-(l)"'" + (1 —u)(1 - q‘-(l)’”'}} E(M — my, ). (3.36)
{Ze{o1}N} \Li=1

We can now nse this expression to state the Dynamic Target-Based problem in the case of

a single class of weapons.

Problem 3.2 The Single Weapon Class, Dynamic Target-Based (SDTE) problem can be

stated as:

min min _Fy(my, 1)
{mez;} {{#ez}})

Note that the optimization problem is made up of (a) finding the optimal number of weapons

to be used in stage 1 (i.e in]) and (b) finding the optimai assignment of the stage one
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weapons. We will call problem (a) the main problem and problem (b) the assignment
subproblem. These problems will be studied separately. If we fix the number of first-stage

weapons m; to be arbitrary, then the assignment subproblem can be written as:

Problem 3.3 (Assiynment Subproblem:

min Fj(my,%)

{zezl’}
N
subject to Zz,- = my,
=1

Now if we denote the optimal assignment for this subproblem by £*(my), then the dynamic

proolem 3.2 can be restated as follows:

Problem 3.4 (Main problem):

{mIPeii} F(m, & (my))

subject to € < m; < M.

In subsectio. 3.4.1 we will present an MMR-type algorithm for the assignment subproblemn.
We will show that this algorithm produces an optimal solution for the case of two targets.
We have shown that the objective function of problem 3.4 is not unimodai. In subsection
3.4.2 we will assume that the assignment subproblem can be solved and present an algorithm
for obtaining at least a local minimum for problem 3.4. The algorithms presented in sections
3.4.1 and 3.4.2 can be combined to obtain an algorithm for producing a near-optimal solution

to the original problem 3.2.

3.4.1 A MMR Algorithm for the Assignment Subproblem

In this section we will consider the assignment subproblem 3.3. We wiil assume that m;

is fixed and counsider the problem of finding the optimal assignment for these weapons. A
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Maximum Marginal Return Algorithm, similar to that used for the static problem, will be
presented. We will prove that this algorithm yields optimal assignments for the case of two
targets. We conjecture that it produces a near-optimal solution for the case of more than
two targets.

The algorithm to be presented, sequentially assigns the m; weapons in the first stage.
Note that in the second stage, M — m; weapons will be assigned. Let us denote the stage
1 assignment vector if & weapons have been assigned (in stage 1) by Z(k). The marginal

return of adding an additional weapon to target ¢ can then be written as
A(E(h)) = Fi(2(k)) - Fi(Z(k) + &)

where e = (0,...,0,1,0,...,0). For a first stage assignment of 7, let

Si(£(k)) 4t he expected cost, given that target ¢ survives the first stage,

D;(£(k)) 4the expected cost given that target ¢ is destroyed ir the first stage.

Note that S; and I); depend on the number of weapons k that have already been assigned
in stage 1 as well as the assignment of these weapons (k). Note that it also depends on
the number of weapons available in stage 2. It should be emphasized that it was assumed

that m; weapons are available in stage 1 and so M — m; (and not M — k) weapons will be

assigned in stage 2. We can write

Fy(£(k)) = qi(1)™ Si(E(k)) + (1 — g:(1)™) Di( E(k)),
and
Fy(£(k) + &) = @(1)" T Si(E(0) + (1 = q( 1)) Dol F(k)).
Therefore
Ay(E(k)) = pi(1)(1 = pi1))™[Si(E(K)) — Di(E(k))}.

Recall that for the static problem the marginal return of adding a weapon to a target which
already had z; weapons assigned to it was V;p;(1 — p;)*'. Therefore the marginal return for

the dynamic problem can be thought of as the marginal return for a static problem with a
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procedure MMR
Pick a value for my;
begin
£:=10,...,0"; : -
for i = I:N do A; = Vi(£(0))pi (1) )
for j = 1:m; do
begin
Let r be such that A, = max;{4;};
=Ty + 1;
for i = LN do A; = Gi(Ep(1)(1 = pi( D)0,
end
end

Figure 3.12: A MMR algorithm for the Assignment Subproblem

modified value Vi((k)) given by

(Z(k)) = §i(Z(k)) - Di(2(k)).

However, note that, unlike the static problem this value depends on the number of weapons
& that has already been assigned and it also depends on the specific assignment & of these
Weapons.

In figure 3.12 we have written the code for an MMR algorithm for the assignment
subproblem. Each time a weapon is assigned, in stage one, the marginal returns of all
targets must be updated. If k¥ weapons have already been assigned in the first stage with an
assignment Z(k), then, the marginal return of increasing the number of weapons assigned

to target ¢ is given by

A(Z(K))

pi(1)(1 = (V) PSUF(E)) - DAF(R))]

Vi E(R)p(1)( - pi(1))™®.

i

The only difference between this algorithm and the onc that was given for the static problem
is that the value of the target is modified each time a weapon is added. Note that the
algorithv for the static problem is the special case of the algorithm presented in 3.12 in
which m; = M and mqo = 0. For this case it is easily seen that V;(a’r.'(k)) = V; for all values -

of k.

i
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One of the most computationaly intensive parts of the algorithm in figure 3.12 is the
. computation of V;(£{k)) especially for large values of k. In practice it would be best to
approximate this value. One such approximation has been suggested by Castafion et al.
[10). We will briefly describe this approximation.

Let @ € {0,1}V~! denote the state after stage 1 of all targets except target i. Let us

denote the second stage cost if the state is & and target i is destroyed by Fy(mg, @). Also
denote the number of weapcons assigned to target ¢ in stage 2 if target ¢ survives and that

the state of the other targets is @ by z,;(i). We can write

! Vi = S§i-D;

3> Pr(i = ®)[Vi(1 ~ pi(1))TD + Fyp(mg - 5i(), @) — Fy(ma, )]
De{0,1} V-1

We can assume that the function F(mgs, ) is smooth so that if we denote its marginal

i

l
] return at mg — () by A;(#), then
] |
| Fy(my -~ (%), %) = Fa(ma, @) = z;(8)A(F).

Therefore

Vix Y Pr(@ = d)[Vi(L - pi(1)™D 4 z(B)A(D)].

An iterative procedure is then used to approximate the right hand side.
L Another approach that can be used to approximate ** 1 value of V; is to use Monte Carlo

? simulations3. Recall that
i Vi(E(k)) = Si(&(k)) — Di(&(k)).

We can find approximate values for §; and D; as follows. We will simulate the outcomes of
all targets except target i as follows. For each target j we will flip a coin. f z; weapons have
been assigned to the target then the success probability of the coin will be (1 - p;(1))®. If
the flip is successful then we will assume that the target survived. If the flip is unsuccessful

. then we will assume that the target was destroyed. Suppose that the target state after all

3A .imilar approach will be used for the more ditliculi problem in chapter 5.
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flips have been performed is #. §; is approximated by computing the second stage cost !
under the assumption that target ¢ survived and the target state of the other targets is

@. Call this cost S;. Dj is approximated by computing the second stage cost under the

assumption that target ¢ is destroyed and the target state of the other targets is 4. Call

this cost D;. We then have

Vi(&(k)) = Si(£(k)) ~ Di(£(k))-

Several of these Monte Carlo runs can be performed and the sample mean taken as an
approximation to Vi

) We believe that the assignment produced by the MMR algorithm is optimal but have
not been able to prove this in general. We can however show that it is optimal for the case
of two targets, This result, which halds for uny number of stages is given in the following

theorem:

Theorem 3.8 Consider the T-stage Dynamic Target-Based problem +vith two targets and
with weapon independent kill probabilities. If the numbers of weapons to be used at each
stage is fized then the optimal assignment of the weapons for the first stuge can be found by

| using ¢ MMR algorithm.

Proaf: To simplify the notation we will denote the kill probabilitiee of the first stage by p;
instead of p;(1). We will prove the theorem by inductior on the stages. Noie that it is true
v for the case of a single stage since this is the static problem for which the MMR algorithm
g Is optimal. Let us assume that the theorem is true for all stages but the fiist. We will now
prove that it holds for the first stage.

The proof of the optimal assignment of the weapoxs in the first stage will also be by
induction. The number of weapons used in the firsi stage is m;. 1f my = 1, then this weapon
should be assigned to the target for which the reduction in cost is maximum. Therefore, the
theorem holds for the case m; = 1. Let us assume that the theorem is true for m; = K — 1
weapons and consider the case my = K. Denote the optimal assignment for the case of .

K - 1 weapons by . We will denote the corresponding cost by Fy(£). The assignment

L i a0 M R RS RT VRdtim, 7 EOR
o et o et 8 s . -




CHAPTER 3. THE DYNAMIC TARGET-BASED PRUBLEM 101

which is the same as # except that an additionai weapon is assigned to target i will be
denoted by ¥ + e;, and the corresponding cost will be denoted by Fy(% + ¢,). Let
ST defihe expected cost given that target i survives the first stage.

Di(7) it he expected cost given that target ¢ is destroyed in the first stage.

We have

A{E+e¢) = (1-p) @S+ (1= (1=p)™t)Di(T)

(1 = pi)> 1 [Si(®) - Di(D)] + Di(3).

Since Fi(£) = (1 — p)"[Si(£) — Di(£)] 4 Di(Z) then we can also write:
R(Z + e) = (1 - pid (&) + piDi()

Let 7 be any assignment of the K weapons. Denote the cost of this assignment by Fy(7).
For any target j such that r; > 0, let 7 — ¢; denote the assignment which is the same as
7 except that one less weapon is assigned to target j. Let D;(#) denote the expected cost
given that tavget j is destroyed in the first stage and let 5;(F) denote the expected cost

given that target j survives the first stage. We then have
Fy(7) = (1 = p)F1(F = €5) + p; D;(F).
Therefore, for any pair of targets ¢ and j with »; > 0 we have
Fi(F) - Fi(Z + &) = F(F- ¢5) = F(8) + pily(8) — D&)] - pi (7~ €5) ~ D;(7).
From our induction assumption, we know that Fy(7— ¢;) > Fy(£). This implies that

Fi(#) = Fy(F +2) 2 plF(F) - DIE)| - il B(F - ) -

{ D(7)]
e I\

F &2 &~ g 11

2j1

If pi F1(£) — Di(2)] > p;{F1(F — €;) — D;()], then the proof is complete. Unfortunately,
this is not always the case so let us assume that p{Fy(F) — Di(Z)] < p;[Fi(F - €;) — D;(M).
We will also assum2 that 1 is chosen so that p; > p;. Note that this can always be dome

(since we can always choose i = j). These assumptions can be combined to obtain

(1 = pi)[FA(F = &) = D;(7)] 2 (1 - pi)[FA(F) - Di(&))- (3.37)
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The cost difference of the two assignments can also be written as:
R(7 - F(Z+ e) = (1= p;)[Fi(F = ¢j) = D;(M)] = (1 = p)[Fi() = Di(2)] + D;(7) ~ Di(%).
Using the inequality in 3.37 we have:

Fi(7) = Ri(£ +e¢) > Dy(f) - Di(&). (3.38)
Let us assume that target k is the one with the largest marginal return, then

Fi(T+e) € Fiy(§ 4+ e).

Using this in 3.38 we have that

F\(7) = Fy( + ) 2 D;(7) - Dy(@). (3.39)

If we can prove that for some i and j such that r, > 0 and p; > p;, D;(F) > Di(f), then
we have Fi(7) > Fi(Z + e;) which implies that the assignment obtained using the MMR
algorithm is as good as assignment 7. Since assignment ¥ was chosen arbitrarily, then we
are done. Since we have not used the fact that ¥ == 2 the proof would hold for all N.
Unfortunately, we have uot been able to show in general that, for some i and j such that
r; > 0 and p; > pj, Dj(7) 2 Di(£). However, consider the case of two targets. N = 2. Since
T # 7 then there must exist a target j for which r; > z;. For simplicity let us assume that

this inequality holds for target 1. Since there are only two targets then

Dy(7) = Va(1 - p2(1))*(1 - pa(2))™

and
Di(Z) = Va(1 ~ p2(1))™(1 - p2(2))™

Since v > z; then it must be that 2o > ry which implies that D,(7) > Dy(Z). Hence the

theorem is true for the case of two targets. ®
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procedure
begin
Pick a value for m; € {1,2,..., M ~ 1};
Repeatwhile 0 < my < M
If Fi(my +1,&(my + 1)) < Fi{my, £(my)) then
my «—~— my + 1;
elseif Fij(m; — 1,*(my = 1)) < Fi(my, & (my)) then
my —— my — 1;
else
quit
endif
end
end

Figure 3.13: Algorithm for finding a local minimum of the function Fy(miy, £ (m,)), i.e. the
optimal value if the number of stage one weapons is fixed at m;.

3.4.2 Optimal Number of First Stage Weapons

In this subsection we will assume that the assignment subproblem 3.3 can be solved. Denote
the optimal assignment, if mi; weapons are used in stage 1, by £*{m,). Since the function
Fy(my,7(m,)) has multiple local minima, a global search will have to be done to obtain
the global minimum. We believe that for most practical purposes a local minimum will
suffice!. A local minimum can easily be found by the use of a local search algorithm such
as the one given in figure 3.13.

In each iteration an assignment subproblem must be solved. Since this requires a great
deal of computation it is best to make approximations. The following approximation has
been used by Castaiion et al [10].

Let Fy(iuy,mq) denoie the optimal cost for the problem if m; weapons are used in stage
I anrd mq weapons are used in stage 2. Each iteration requires the computation of the

following quantity:

Fy(mqy,mg) = Fi(m; + 1,ma — 1).

I this quantity is positive then the solution can be improved by reducing the number of

‘Recall the example given in figure 3.1 and the corresponding discussion.
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weapons in stage 2 by one »nd increasing the number irn stage | by one. This quantity can

he approximated as follows:
Fi(my, mg)=Fi(mi+1,my-1) x [Fi(m1, ma)— Fi(my+1, m2)+ Fy(my, m2)— Fi(my, ma—1))

where Fj(m;, my) — Fi(m, + 1,m3} is the marginal return of adding a weapen to stage 1.
If the MMR algorithm of the previous subsection is used to solve the subproblem, then this

difference is given by
Fi(my,mg) = Fi(my + 1,my) = m.a..\c{f/.-p;(l)(i - pi(1))=tm1},

The difference Fy(mq, my — 1) — Fy(m,m3) is the marginal loss of removing a weapon from
stage 2. This quantity is given by

Fi(my,mg - 1) = Fi(my,my) = Z Pr(i =&) min {Vip(1)(1 _ pi(1y)B@=1y,
se{{o.1}¥ {ilz.(@)>0}

An iterative process is used to obtain this difference. These approximations are used to
compute an approximate value for the quantity Fy(m,my) — Fi(m; + 1,mz — 1). Similar
approximations can be used to compute an approximate value for the quantity Fy{m,, m2)--

F;(ml -1, my+ ])
3.5 Concluding Remarks

The following conclusions about the dynamic Target-Based problem can be drawn from the

results of this chapter.

o An optimal solution cannot be obtained for the general problem 3.1 (in practice)

1
a2 ane 4

because of the computational complex

e Even under the assumption of weapon independent kill probabilities, the problem is
still computationally difficult because multiple minima may exist (proven by example).
However, we have also found that, if this is the case then the difference in cost between

any two local minima is small compared to the cost of either of them. This suggests

that each of these local minima corresponds to a near-optimal solution to the problem.
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e If we assume weapon independent kill probabilities and assume that the number of
weapons to be used in each stage is fixed, the problem is still difficult, The difficulty
is due to the fact that the cost-to-go function is not separable with respect to the
assignment variables. We can show that for the case of two targets a MMR algorithm
is optimal. We conjecture that such an MMR algorithm will produce a near optimal

solution for more than two targets.

o For the case of urnit valued targets, a single kill probability and many stages we have
found that roughly half as many weapons are required for the dynamic strategy to
obtain the same performance as the static one. This result was proven for the case
of two targets. We have also shown that it holds approximately for large numbers of

targets. Our results also show that most of the efficiency of the dynamic problem is

obtained by having 3-5 stages.

¢ In the case of the two-stage problem with a large number of unit-valued targets, stage
dependent kill probabilities in the range 0.6 < p(1),p(2) < 0.9, and a 2:1 weapon
target ratio, it is optimal to use half of the weapons in stage 1. This suggests that,
for the more general problern, if the dependency of the kill probabilities on the st:.ge
number is small then a good approximate solution can be obtained by assuming stage

independent kill probabilities.

There are several directions in which one may continue this research. One conjecture which
we were unable to prove is that the MMR algorithm is optimal for the assignment sub-
problem for the case of mere than two targets. We have not considered solving the most
general form of the problem (i.e with kill prob-~bilities that depend on the weapon, target
and stage), because of its difficulty. The algorithms in this chapter can be modified and
applied to the genercl problem. Even if heuristics are used, the computation time of these
problems is apt to be great for large-scale problems that must be solved in practice.

In practical settings, it is vital that solutions be obtained as quickly as possible. This

will require the use of parallel computers. These computers will require algorithms which
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are easily parallelizable. Research into parallel algorithms for the problem is required.
R Furthermore, in practice the computational centers and information retrieval centers will

X be geograj-hically dispersed. This suggests the use of distributed algorithms as well.

R S e w—




Chapter 4

The Static Asset-Based Problem

In this chapter we will consider the static version of the Asset-Based WTA Problem. In this
problem each offensive target is aimed at a valuable asset of the defense. If it is not engaged
it destroys the asset with a given probability called the lethality prabability, The defense
has a number of weapons with which to engage these targets. As before, the weapon-target
engagements are stochastic, and are quantified by kill probabilities. Values are assigned to
the assets and the deferse must assign weapons to targets with the objective of maximizing
the expected total value of the surviving assets. Note that each asset may be attacked by
several offensive targets. Also, as before, each target may be engaged by several defensive
weapons (salvo attacks).

This model may be more applicable to the later stages of a conflict when the destinations
of the target: are more precisely known. Note that in order to save an asset the defense
must destroy all of the targets aimed for it. Each of these targets mu:t be attacked with

enough weapons so as to make the probability that one or more of them survives sufficiently

the assets. Therefore the defense must decide which of the assets should be defended and
assign all of its weapons to the defense of these assets. No weapons should be assigned to
the targets aimed for the other not-to-be-defended assets. This is known as a preferential
defense strategy (see for example Bracken et al. [17]).

In section 4.1 we will give a mathematical statement of the problem. Since this sroblem

107
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is a more general version of the Static Target-Based problem, then it is NP-Complete. In
section 4.2 we will consider the special case of the problem in which the kill probability
of each weapon-target pair depends solely on the asset to which the target is aimed and
the lethality probability of each target-asset pair is dependent solely on the asset. An
algorithm yielding suboptimal solutions will be presented for this problem. In section 4.3
we will consider the problem under the assumption of a single class of weapons. We will also
provide an algorithm for this problem which yields suboptimal solutions as well as a method
for obtaining an upper bound on the optimal value. In section 4.4 we will approximate the
Asset-Based problem by a Target-Based one. The solution methods of chapter 1 can then
be used to solve the approximate problem. In section 4.5 we will present some sensitivity
analysis results.

The key contribution of this chapter is the algorithm for providing suboptimal solutions
for the problem under the assumption of target dependent kill and lethality probabilities.
This is the best algorithm, that we are aware of, for this special case of the problem. The
algorithmn also provides a method for obtaining an upper bound on the optimal value of

this special case of the problem.
4.1 Problem Definition

We will assume that the engagement of a target by a weapon is independent of all other
weapons and targets and that the impact of a target on an asset is independent of all other
targets and assets. We will also assume that all weapons are committed “simultaneously”,
i.e. in a single stage. The following nctation will be used. The definitions of all additional

notation may bc found in Appendix A.

K % the number of assets of the defense,

N % the number of targets (offense weapons),
M ¥ the number of defense weapons,
Gy 4 the set of targets aimed for asset k, k=1,2,...,K,

ng = the number of targets aimed for asset k, (i.e. |Gkl), k = 1,2,..., K,
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.

- Wi = the value of asset k, k=12,....K,

‘1 : Pij 4 the probability that weapon j destroys target i if assigned to it,

' i=1,2,...‘N_; i=1,2,..., M, 1
l e 4 the probability that target ¢ destroys the asset to which it is aimed, ¢t = 1,2,..., N.

The decision variables will be denoted by:

! 1 if weapon j is assigned to target i

1 Ti; = :

: 0 otherwise

The probability that targets t is destroved is given by 1 - Hﬁl(l — pi; ). Therefore the
probalility that asset k survives all targers aimed for it is given by [Lieq [1 -7 Hﬁ-‘il(l -

2i;j)*’]. Herce we can state the problem as:

Probiem 4.1 The Static Asset-Based (SAB) problem can be stated as:

K M
J=3 Wi [T -mT]0-pi)™),

, max
=oelollt G, =1

N
subject to Ea:.-j =1, j7=12,...,M.

=1

The objective function is the sum over all assets of the value of the asset times the probability
of survival of the asset. The constraint is due to the fact that each weapon can be assigned

to only one target.

The solution to prublem 4.1 provides us with an assignment of weapons to targets.
However, recall that it may be optimal to use a preferential defense strategy, i.e. lefend
some of the assets and leave the others undefended. This information can be ohtained from
the solution of problem SAB. From the solution of SAB we can tell which of the assets
should be defended and how each of the defended assets should be defended. We will find

that the assets which are defended have large values and/or have few targets aimed for

| cmsonn s 4 i nemamn it s . ¥y s | - o o 2 _—n e a2 v ot oo 1. ® A T
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them. The assets which have few targets aimed for them will be assigned a small number
of weapons per target. If an asset has many targets aimed for it but has such a large value
that it is optimal to defend it, then we will find that many weapons per target will be
assigned to defend it. This must be done to ensure that the probability, that one or more
of the targets aimed for it get through, is small.

If exactly one target is aimed at each of the assets then problem 4.1 can be simplified
by assigning the value of ihe asset to its target and minimizing the expected total value
of the surviving targets. This leads to precisely the Target-Based WTA problem, which
means that the Target-Based problem is a special case of the Asset-Based problem. Since
the Target-Based problem is NP-Complete, then we conclude that the Asset-Based problem
is also NP-Complete.

The Asset-Based problem has proven to be significantly more difficult than the Target-
Based problem. The difficulty stems from the fact that, unlike the Target-Based problem
which had a convex objective function, the objective function of the SAB problem is neither
convex nor concave. Even if we assume that the kill probabilities are independent of the
weapons, the problem is still difficult. However, it has not yet been proven whether the
problem, under the assumption of weapon independent kill probabilities, is NP-Complete

or polynomial time solvable. !

!Recall that an optimal, polynomial time algorithm exists for the Target-Based problem when this as-
sumptior. is made. Hence the Target-Based problem, under this assumption, is polynomial time solvable.
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4.2 Asset Dependent Kill and Lethality Probabilities

In this section we will assume that the kill probability of a weapon-target pair is dependent
solely on the asset to which the target is aimed. We will aJso assume that the lethality
probability 7 of a target is dependent solely on the asset to which the target is aimed. We
will denote the kill probability of a weapon on target i by pi, where & is the asset to which

target 1 is aimed. Let us denote the number of weapons that are assigned to target : by 2;.

Problem 4.2 The Static Asset-Based Problem with Asset dependent probabilities (SABA)

can be stated us:

K
max J = Wi (1 —mi(1—pe)*),
S 1=2=:1 k'_gk_ k(1 = pe)™)

N
subject to Zz; =M

1=1

The optimal assignment of problem 4.2 has some important properties which we give in the

following theorems.

Theorem 4.1 If £ is an optimal assignment for problem {.2 then

|zg — x4 <1, Va,be Gy, k=1,...,K.

Froof: Pick any asset k and assume that z, > & + 1 for some pair of targets a,b € Gg.
Let J(&) denote the value of this assignment. Now consider the assignment which is the
same as ¥ except that a single weapon is removed from target a and nssigned to target b.
If we use the notation e,«T = (0,...,0,1,0,...,0), then this assignment can be written as

T — €4 + €. We will denote the value of this assignment by J(& — e, + ¢,). We have:

J(Z) = J(T — eq 4+ e) = Wimepkl(1 = pi)™ 7" = (1= p)™] J] (1= (1 -pe)*)  (4.1)
1E€EGy
i#a
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Since z, > z + 1 then the right hand side of 4.1 is negative. Therefore,
J(ZT) = J(L - e, + ¢3) < 0.

This is a contradiction since the assignment ¥ was assumed to be optimal. &

This theorem states that, in the optimal assignment, the numbers of weapons assigned
to any two targets aimed for the same asset are either equal or differ by one. This result
can also be seen by using a symmetry argument. Theorem 4.1 can be used to simplify
problem 4.2 by introducing a new decision variable X which will be used to denote the
number of weapons assigned to all targets against asset k. Given X} one can obtain an
optimal assignment by spreading the weapons evenly among the targets. We will let X
be the K-dimensional vector with elements X;. Let us define Ji(X}) to be the expected
surviving value of asset k if X, weapons are assigned to its targets and these weapons are

spread as evenly as possible among the targets. Then,
" XY Xenp | & X Xy —
JK(X) = Wil = me(1 = pi) W )¥ ™81 = (1 - ol ymEHEDX gy

We can now use equation 4.2 to simplify problem 4.2 to

Problem 4.3

K
max J = Wi du(Xg),
b ;; ki (Xe)

K
subject to EX;‘=M.
k=1

Note that the objective function in problem 4.3 is separable. If each of the functions Ji was
concave then theorem B.1 could be applied to show that an MMR algorithm will produce
an optimal solution. Unfortunately, the functions Ji are not concave; but they do have

some important properties which we will exploit to deduce an algorithm for problem 4.3.
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In figure 4.1 we have plotted an example of the function Jj for the case ny = 10,p; =
08,7, = 0.9 and W; = 1. Clearly it is neither convex nor concave. Note that between
multiples of n) the function is convex. This is due to the fact that the weakest link in the
defense of the asset is the target to which the least number of weapons is assigned. As a
function of multiples of ng, the function is first convex and then becomes concave. This

change occurs roughly at the point where the expected number of surviving targets is one

i.e. the value of X for which

neme(l ~ Pk)f"- =1L
These two properties can be stated formally as follows,
Pioperty 1: If [g\;-_l <X < I'fk-] then
Ji(X = 1) = 2Ji(X) + (X +1) > 0.

Proof: Let us define

a=1-m(l -pk)[%],

and
(&)
B=1—m(1=pp)m,
Note that
Je(X +1) = Jk(X)%,
and
_ B
Je(X — 1) = Je(X)
Therefore,

Jk(X)[% + g ~ 2]

Je(X ) — B]*/(ef)

0,

J X = 1) - 2J(X) + Je(X 4+ 1)

i

v

which completes the proof. ®
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Property 2: There exists an r, € Z4 such that for all > r,
Je(ngr) — 2Jk(ni(r + 1)) + Je(nk(r +2)) < 0.
Furthermore, if rp > 0 then for all 0 < r < 7y,
Je(ne(r = 1)) = 2Ji(ner) + Jie(ne(r + 1)) 2 0.

Proof: Note that
Ji(nir) = Wi(1 ~ me(1 = pi)7)™.

Let J}/(ngr) denote the second derivative of Ji(nxr) with respect to r. We have

Ji(ner) = Wingme(1 = i) log?(1 = pr)(1 = (1 — pi)" )™ 2 [nemri(1 - i)™ ~ 1)

Therefore if r £ [-}(—E%ﬁ‘;’ﬁlj , then J/(nzr) > 0 and the function is convex. Otherwise

ifr > [-'Els?i(%ﬁgl] then Ji'(nkr) < 0 and the function is concave. ®

The first property says that the function Ji is convex between multiples of ng. The second
property says that the function Ji(rn.) is at first convex and then becomes concave.

If we approximate the function Ji by a concave function then the MMR algorithm,
applied to the approximate problem, will produce the optimal solution for the approximate
problem. We will approximate each of the functions Ji by its concave hull which we will
denote by J;. Note that, because of property 1, the line through the origin which is tangent
to the function J, will touch at a point where X is a multiple of n;. Define £, € 7. to be
such that X = {pn, is the point at which the tangent through the origin is tangent to Ji.
Next note that, because of property 2, £, > ri where ry is the point at which the function

Ji(rn,) changes from being convex to concave. This implies that the function Ji(rng) is

concave for r > ¢;. These facts can now be used to obtain the concave hull J; as

_ ~& i (nsbi) if X < nigly
— nxly
Ax) = { IOl )+ (E = LEDUrnel£]) = Tumel£]) i X > mte Y
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0.9+ -

. 0.8} .

0.7+

0.5

JK(X)

: 0.3}

0.2}

_ Figure 4.2: The hull Ji(X) of the function Ji(X) shown in figure 4.i. The dashed line is
Ji(X) and the solid line is Ji.(X).
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, , In figure 4.2 we have drawn the hull for the function that was plotted in figure 4.1.
. The dotted line is the function J; while the solid line is the function Jx. Note that in this
example £x = 2 and rx = 1. Secondly note that Ji(X) is a good approximation of Ji(X) for
X > ngli. This fact will be used in obtaining bounds on the optimal value for the problem.
Consider, now the problem in which we replace the objective function in 4.3 by its

concave hull.

Problem 4.4 An approzimation to problem 4.3 is given by:

i

i

! _ K _

i max J = WJka,
{ Xezk kz;: kJe(Xe)
{

)

59
subject to E Xe= M.
k=1

Note that theorem? B.1 can be applied to this problem to conclude that the MMR algorithm

produces the optimal solution. Denote the optimal solution to 4.4, if an MMR algorithm is

used, by X", The assignment X" s the following important property.

Property 3: For all but one of the assets k, X,: is a multiple of ny.

Proof: The proof will be by contradiction. Assume that the property does not hold.
“ This means that there exist at least two assets with the property that the total num-
i ber of weapons assigned to the targets aimed for them is not a multiple of the number
of targets aimed for them. For simplicity let us assume that two of these assets are
assets 1 and 2. Note that the function Ji is linear between multiples of n.. Therefore,
the marginal return of asset k is constant between multiples of ny. If the marginal
return for asset 1 on termination of the algorithm is greater than that of asset 2

then the weapons that were assigned to asset 2 would have been assigned to asset

?Note that in theorem B.1 a convex function is being minimized. The theorem can be applied to problem
4.4 by maximizing the negative of the objective function
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1 leading to a contradiction. Therefore the marginal return of asset 2 on termina-
tion of the algorithm must be greater than or equal to that of asset 1. If this is the
case, then, since the algorithm started assigning weapons to asset 2 then it would
have continued doing so until the number of weapons assigned was a multiple of n,
(i.e. until the marginal return for asset 2 changed value). This is a contradiction since

we assumed that the number of weapons assigned to asset 2 was not a multipleof ny. &

This property states the following. If an asset is defended, then the same number of weapons
is assigned to each of the targets aimed for the asset. Because the total number of weapons
is arbitrary, then it may not be possible to do this for all of the defended assets. Therefore,
the property may not hold for one of the defended assets. Let target v be the target for
which X7 is not a multiple »f n,, i.e the property is violated.

By examining 4.3 one can see that if X is a multiple of nj then Ji(X) = Ji(X). Since

f(; is a multiple of n; for all assets k except asset v then:
JX) = HX) = J(X) + T (XD, (4.4)

Finally note that J(X) is an upper bound to J(X). Therefore, if we denote the optimal

solution to the original problem 4.2 by X* then
J(X) > J(X). (4.5)

Furthermore since X" is optimal for Problem 4.2 then

==

J(X) 2 J(X), (4.6)
Combining equations 4.4, 4.5 and 4.6 we obtain
JEXY+ (X3 - (X 2 9(X) 2 H(X) (4.7

Therefore the optimal value of problem 4.4, the approximate problem, can be used to obtain

upper and lower ! unds on the optimal value of problem 4.3.
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Notice that the solution to the approximate problem 4.4 is a suboptimal solution to the
original problem 4.3. The difference in value between the optimal and suboptimal solutions

is bounded by
J(E - IX) < F(X) - J(XD) (4.8)

Note that if J(X7) = J(X?), which would be the case if X7 is also a multiple of n, then

we obtain

J(X) = J(X)

which implies that X s an optimal solution to problem 4.3. In other words, if the total
number of weapons is such that for each defended asset the same number of weapons is
assigned to each of the targets aimed for the asset, then the algo ithm produces the optimal
solution.

Let us now consider the case in which J(XJ) > J(X}). In this case X is not a multiple
of n,. By the nature of the MMR algorithm, if the number of weapons is increased by
Ty [{—f—] — X weapons, then the optimal solution to problem 4.4 will be the same except
that X will be increased by the number of additional weapons making it a multiple of n,,.
The analysis in the previous paragraph can then be used to show that the optimal solution
for the approximate problem is also optimal for the original p.oblem 4.3. Similarly if the
number of weapons is decreased by X —~ n, [f};}] then the resulting optimal solution of the
approximate problem is optimal for the original problem 4.3 with the decreased number
of weapons. These results suggest that the optimal soluticn obtained for the approximate

probiem is close to being optimal for the true problem 4.3. We will now state our result as

Theorem 4.2 Consider the Static Asset-Based problem in which the kill probability of @
weapon-target pair and the lethality probability of a target-asset pair is dependent solely on
the asset te which the target is «ined. Let X" be the optimal solution to the approrimate

problem defined in 4.4 obtained by the use of the MMR algorithm. Let X* denote the optimal
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solution of the itrue problem (i.e problem 4.3) then
JE)+J(X) = J(XD) 2 JE) 2 9K,

Furthermore if we let

| e=mpx M J(Xk) = Je(Xi)

- i the.n

JR) - X ) ge.

i Proof: The first part of the theorem has already been proved. The second part is obtained

by upper boundiag the difference J(X7) — J(X2) by its maximum possible value. m

Note that ¢ is the maximum over all assets of the maximum difference between the
function Jx and its concave hull Ji. Therefore ¢ is dependent sclely on the shape of the
functions Jx. If we increase the size of the problem by in reasing the number of assets,
! targets and weapons but do not change the types of assets so that ¢ does not change then
1 we find that as the problem size increases, the percentage error of the suboptimal solutien
decreases because ¢ remains constant. Therefore, for large-scale problems we expect that
the algorithm will perform well.

Note that the bound ¢ can be computed even before the problem 4.3 is solved by a
MMR algorithm. This provides an upper bound on the error of the suboptimal solution
,m; that is obtained by the algorithm. However, after the approximate problem 4.4 has been

O solved a much tighter bound is obtained by the difference J(X) — J(X2). Furthermore, as

we have shown, the solution can be mad optimal by slightly decreasing or increasing the

number of weapons.

4.3 A Single Class of Weapons

In the previous section we assumed that the kill and lethality probabilities were solely asset

dependent. In this section we will assume that there is a single class of weapons. In other
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words the kill probabilities are weapon independent and the lethality probability is solely
target dependent. These assumptions are valid for the case of a single cluster of weapons.
Note that this is a more general problem than that of the previous section. We will present
an algorithy - which yields a suboptimal solution for this problem which is similar to that
presented for problem 4.2. The following notation will be used. The definitions of all

additional notation may be found in Appendix A.

E %' the number of assets of the defense,

N % the number of targets (offense weapons),

M = the number of defense weapons,

Wi = the value of asset k£ to the defense, k = 1,2,..., K,

Gy %! the set of targets aimed for asset k, k=12,...,K,

nr = the number of targets aimed for asset k, (|Gy|), F=1,2,...,K,

L& A the probability that target i destroys the asset to which it is aimed, i = 1,2,..., N,
P def  the probability that a weapon destroys target ¢ if it is fired at it, i = 1,2,..., N,

T 4 the number of weapons assigned to target 4, i=1,2,...,N,

# % the N-dimensional vecter [z1,...,2n)T,

Xk 4’ the number of weapons assigned to the defense of asset k, (i.e. 3 ;eq, i),

X %' the K limensional vector Xy,..., XKJT.
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}.“ j Under the assumptions we have made, the probability that an asset survives is the product

over all targets of the probability that the target is destroyed. We therefore have:

Problem 4.5 T'he Single Weapon Class Static Asset-Based (SSAB) problem can be stated

as’

K
| max J(Z) = S wi TT 0 = mi(1 - pi)™),
. zezy k=1 &G

¥ N
| sul, ject to Zx.' = M.

=1

; The objective function is the total expected surviving asset value and the constraint is
; due to the fact that the total number of weapons fired must equal the number of weapons
available.

Because problern 4.5 is separable with respect to the assets, it can be re-formulated as
follows. Let Ji(X) denote the maximum 2xpected surviving value of asset k given that X

weapons are used to defend it.

Problem 4.8 The subproblern (SUB) is defined by:

I(Xk) = max Wi IT (1= mi(1 = po)™),

! €4, i€G),
, , subject to Z z; = X4
‘ €6,

We can now restate the original problem.

Problem 4.7 The problem SSAB can be restated as (MAIN):

K
JXy=S J(X
ﬂ‘%(} Ek( k)

K
subject to E Xy=M.
k1

-~
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We will first consider the subproblems 4.A. The approach wiil then be the same as in
the previous section. We will find the hull of J, and then use an MMR algor hm on the
approximate problem in which Ji is replaced by its hull in problem 4.7. We wil] then show
that the solution of this approximate problem is a near-optimal solution to the irie problem
4.7. Since the approach is identical to that used in the previous section, some of the details

will be omitted.
4.3.1 Solution of the Subproblem

Since the logarithm function is monotonic, if we replace the objective function of problem
4.6 by its logarithm then the optimal assignment of the resulting problem will also be

optimal for the original problem. If we take the logarithm of the objective function of SUB

we obtain

InWi+ 37 Infl - mi(1 - pi)].
1€Gy
The first term is constant so we can remove it and optimize the second term. The opti-

inization problem is:

max F(Z) = Y In[l - m(1 = pi)™], (4.9)
ezt i€Gy
subject to E z; = Xk,
1€Gy

Note that the function F(Z}) is separable with respect to the target index i. Next note
that each of the functions In[1 — m;(1 — p;)*/] is concave. ' ‘his can be verified by showing
that the second derivative of this function (with respect te z;) is non-positive. Therefore,
the objective function F satisifies the conditions required to apply theorem B.1. Hence, a
MMR algorithm will produce the optimal solution. This solution will also be optimal for
problem 4.6.

We next need to obtain the concave hull of the function Ji. In the previous section this
task was essy because in that case the funciions J, bad two sperial properties which could
be exploited, (a) Ji is convex between muitiples of n; and (b) as a function of multiples

of ng the functior is first convex and then concave. In this case however, the functions

e M B MM 4. M S . S 070 AL At Al 1] e L SISt LY St Sy L 2
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Ji do not have these special properties. The functions Ji in this section differ from thacse
of the previous section because the kill probabilities and lethality probabilities are target
dependent instead of asset dependent. Let us investigate how these two differences affect
the two properties (a) and (b) of the functions Jj in the previous section.

We will first investigate how the convexity of the function J,(X) between multiples of
ny is affected when the values of the kill and lethality probabilities are allowad tc be target
dependent. Our intuition implies that the variation in these probabilities should have a
smoothing effect on the function Ji(X) which means that the function should be “less
convex” between multiples of ng.

We will first consider the effect on the function Ji(X) when the kill probability of a
weapon target pair is dependent only on the target. For this case we will assume that the
probability that a target destroys an asset is 0.9. We will show the effect for a range of
cases which are of importance to us.

The convex region with the largest curvature is the region ny < X < 2n;. We will
therefore examine what happens in this regior. In order to solve the problem with target
dependent kill probabilities we will assume that the range of the kill probabilities is such
that the optimal assignment for the case of 2n; weapons is to assign 2 weapons to each of
the targets. Some simple calculations show that this is true for example if 0.65 < p; < 0.90
for all targets i. Let the kill probability for the target independent case be p and let
the set of kill probabilities for the target dependent case be {p;}. We will choose {p;}
so that the expected surviving asset value for both cases are the same at X = n; and
at X = 2n4. Let Ji(X) denote the maximum surviving asset value for the case of the
target independent kill probabilities and let fk(X ) denote it for the case of the target
dependent kill probabilities. One can show that Ji(X) > Je(X) for ny € X £ 2ng. Since
Jr(ng) = Ji(ng) and Jp(2nk) = Jx(2nx) (by the choice of {p;}) then this suggests that in
the region n; < X < 2ni the curvature of the function Jj is less than that of the function
Jk.

Consider the prublem of a single asset with W = 1,n = 10 and 7; = 0.9. In figure 4.3 we

Ty T ——— 2 122 P vt e 70 S s 2 S PR A 4 AR S5 Bt vt P e i St . ot
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& Figure 4.3: Maximum expected surviving value of an asset with W = 1,n = 10,7 = 0.9
for target dependent kill probabilities (solid line) and target independent kill probabilities
(dashed line).
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Figure 4.4: Maximum expected surviving value of an asset with W = 1,n = 10,p; = 0.8
for target dependent lethality probabilities (solid line) and target independrnt lethality
probabilities (dashed line).

have plotted the maximum expected surviving value versus the number of weapons assigned
to its targets. The dashked curve is for the case of target independent kill probabilities

> " L.

- - mL .. _ b
Vi — U.0. 1€ dU

‘d cuive is for the case of targei dependent kill probabilities {p;} =
[7,.7,.7,.8,.8,.8,.9,.9,.9,.9]. In this case we chose the kill probabilities so that J(5n) ~
J(5n). Note that there are still sections in which the function J is convex. However, the
overall effect is that the function J is “almost concave”.

Let us now consider the case in which the kill probability of a weapon-target pai. is

independent of the target but the lethality probability of a target-asset pair is dependent
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on the target. Repeating a similar argument to the above, we again find that for the case of
" target dependent lethality probabilities, the function Ji(X) is smoother than that for the
case of target independent lethality probabilities. This is illustrated in figure 4.4 where we
have considered the problem of a single asset with W = 1,n = 10 and p; = 0.9. We have
plotted the maximum expected surviving value versus the number of weapons assigned to
its targets. The dashed curve is for the case of target independent lethality probabilities
7; = 0.8. The solid curve is for the case of target dependent lethality probabilities {#;} =
(.8,.8,.8,.9,.9,.9,1,1,1,1]. In this case we chose the lethality probabilities so that J(5n) =
J{(5n). Note that the effect of target dependent lethality probabilities is again to smooth
the function. However, in this case the effect is less pronounced than for the case of target
dependent kill probabilities.

Figure 4.5 illustrates the combined effect of having target dependent kill and lethality
probabilities. We considered the problem of a single asset with W = 1 and n = 10. The
dashed curve is for the case of target independent parameters, p; = 0.8,7; = 0.9. The solid
curve is for the case of target dependent kill probabilities, {p;} = [.7,.7,.7, .8, 8, .8,.9,.9,.9,.9],
and target dependent lethality probabilities {=;} = [.8, .8,.8,.9,.9,.9,1,1,1,1]. One can see
that unlike the dashed curve, the sclid curve is almost concave. For all practical purposes,
the solid curve is concave in the region of a heavy defense. This implics that, in the case of
target dependent parameters, the addition of a single additional weapon to the defense of
an asset always has a significant effect. In the case of target independent parameters, if the
number of weapons assigned to the defense of an asset is a multiple of n then the addition
of a few more weapons has a negligible effect on the expected surviving value of the asset.
This means that, unless n more weapons can be added to the defense of the asset, no more
weapons should be added. In some situations it will not always be possible to assign a

multiple of n number of weapons to the defense of an asset, and so if is advantageous to

have target dependent param ters (if feasible).
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Figure 4.5: Maximum expecied surviving vaiue of a unit valued asset versus the number of
weapons assigned to its targets for {a) target depcndent parameters (solid curve) and (b)
target independent parameters (dashed curve).
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4.3.2 Solution of the Main Problem

Let us define J; to be the concave hull of the function Ji (defined in problem 4.6). We will

approximate problem 4.7 by its concave hull. This approximate problem can then be solved

to obtain a sub-optimal solution.

Problem 4.8 The approzimate problem (APR) to problera 4.7 is given by:

"
max J(X)= ¥ Ju( Xk
ok (X) gl k{(Xk)
K
subject to ZXk=M.
=1

Since J is a separable concave function then theorem B.1 can be applied to show that the
MMR algorithm produces the optimal solution. Let X" denote the optimal soluvion of the
approximate problem 4.8. By the nature of the MMR algorithm, we can show that for all
but one of the assets

Jk(X}) = Ju(X7).
Let the asset for which this equality does not hold be assei v. Also let X* denote the

optimal sclution to the true problem 4.7. Using the same analysis as in the previous section

we can then show that
JX )+ T(X3) - J(X7) 2 (X7 2 (X)), (4.10)

Therefore the optimal solution to the approximate problem can be used to obtain upper
and lower bounds on the optimal value of true problem 4.7.
Notice that the solution to the approximate problem 4.8 is a near optimal solution to

the true problem 4.7. The difference in value of these two selutions is bounded by:

JX = J(XT) < J(Xy) - IR (+.11)
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If J(X2) = J(X7) then X is optimal for 4.7. Also note that if J(X2) # J(X2), then by
slightly increasing or slightly decreasing the number of weapons one can obtain a problern
for which the solution to the approximate problem 4.8 is also optimal for the true problem

4.7. We now state our result as a theorem:

Theorem 4.3 Consider the Static Asset-Based problem in which the kill probability of a
weapon-target pair depends solely on the target. Let X" be the optirnal solution to the
approzimate problem defined in 4.8 obtained by the use of the MMR algorithm. Let X*

denote the optimal solution of the true problem {.7 then
JX)+ J(X3) - J(X7) 2 IR 2 I(X).

Furthermore if we let

£= mlgx{osr}ixém-fk()fk) ~ Je( X&)

then
JXY - J(X) <.

Praoof: The first part of the theorem has already been proved. The second part is obtained

by upper bounding the difference J(X7) — J(X?) by its maximum possible value. m

Therefore we can obtain a suboptimal solution X to the problem as well as an upper
bound on the optimal value. Furthermore, if the number of weapons is slightly increased or
slightly decreased then the algorithm produces the optimal solution for the corresponding

problem,

4.4 Approximation of the Asset-Based Problem by a Target-
Based One

[ this section we will provide a heuristic for solving the Asset-Based problem. In this
heuristic, the objective function of the Asset-Based problem is lower bounded by a concave

functien. If this lower bound is used as the objective function, then it can be shown that the
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resulting problem is equivalent to a Target-Based problem. Algorithms for the Target-Based

. problem can then be used io solve the approximate problem.
The approximation that will be used is good in the case of a “strong defense” (i.e. a
o defen:. * in which all assets are defended and, for each asset, the expected number of targets
, which survive the weapon engagements is much less than one). For such a case the survival
: 1 probability of each of the targets will be small. Furthermore, all of the assets will be
defended. In the case of a weak defense the approximation will be good for the assets that
! are defended, but bad for the assets that are left undeferided. We will see that, because
of this, the algorithm will perform badly for problems which require a preferential defense

strategy.

Recall that the objective function for the Asset-Based problem is given by

L K M
B J=Y" Wi [T -m ] - pi;)=).
3 k=1  i€Gyx i=1
If an asset is defended in the optimal strategy, then we know that sufficient weapons will
.
be assigned to its targets so as to make the probability that one or more of them survives
. small, If this is the case, then for those targets we can assume that
i M
i T = pij)™ << 1. (4.12)
b i=1
h . We can now use a binomial expansion of J to conclude that
Jx 3 Will— 3w JT(1~py)™).
k=1 1€Gy =1

Note that this approximation is only valid if the inequality 4.12 holds for all assets. This

o means that all assets must be defended and the defense of each must be strong enough so
B that the inequality 4.12 heolds for all targets. Therefore for many practical problems this
: approximation may not be appropriate. For each target : € Gy, let its value be that of the

associated asset, i.e. V; = W,. The approximation te J can be written as

}\; N M
; . J EHW‘:*ZW”"H(I"IJU)%'
k=1 [ES)

j=1
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Therefore, it is easy to see that, the Asset-Based problem with this approximation as the

objective is equivalent to a Target-Based problem with the same targets and kill probabilities

" and with target values given by Vix,. In other words, the value of a target is the expected

destroyed value of the asset to which it is aimed if the target is not engaged, but all other
targets aimed for that asset are destroyed. Therefore, targets which can potentially do a
lot of damage are assigned large values.

Note that this approximation is a lower bound to the true objective function whereas
the approximation that was made in section 4.3 (i.e the concave hull approximation) was
an upper bound. Let us illustrate this approximation by a simple example. Consider the
case of 10 identical assets each of unit value and each having 10 targets aimed at it. Let us
assume a single kill probability for all weapon-target pairs and a single lethality probability
for all targets. We will use the values: p = 0.8,7 = 0.9,n = 10 and W = 1. Note that ia the
optimal strategy for the approximate problem the weapons assigned to the defense of an
asset are spread as evenly as possible among the targets. This is because all targets will be
assigned the same value V; = 0.9. This is also the optimal strategy for the true problem. The
decision variables are therefore the number of weapons that must be assigned to the defense
of each of the assets. This decision will depend on the shape of the function J(X) which
is the expected surviving value of the asset if X weapons are assigned to its defense. Let
J(X) denote this function for the true objective and let J(X) denote the approximation. In
figure 4.6 we have plotted the true function J(X) as well as the lower bound approximation
J(X). Note that the approximation is ouly good in the region X > 20. Therefore the
approximation is poor for the assets that are not defended.

This approach of approximaiing the Asset- Based problem by a Target-Based one has the
advantage that methods that have already been developed for the Target-Based problem can
be used to solve it, However, this particular approach has a serious disadvantage. Consider
again the problem above. Let us assume that the defense has 100 weapons. The optimal

solution® to this problem is to defend 5 of the assets with 20 weapons each. This results

3The optimal solution to this prablem can be obtained with the algorithm described in section 4.3
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Figure 4.6: The maximum expected surviving value of an asset (solid line) vs. the number
of weapens assigned to its defense for the case W = 1,7 = 10,p = 0.8, 7 = 0.9. The dashed
line is the lower bound approximation.
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in an optimal value of 3.465. On the other hand the optimal solution for the approximate
problem is to assign a single weapon to each of the targets. This results in an expected
value of 1.374. Therefore the value of the solution for the approximate prob!'m is roughly
40% of that of the optimal value. We can therefore conclude that the method described in
this section may perform badly on certain problems. In particular the algorithm performs
poorly on problems which require a preferential defense strategy.

The analysis of this section was performed to illustrate the fact that “reasonable” heuris-
tics may misbehave when applied on certain problems. This fact supports our belief that
one should not design algorithms based solely on intuition. Algorithms should be supported
by analytical results. The aim of our research is to provide these analytical results which

can then be used as a basis for heuristics.
4.5 Sensitivity Analysis

In this section we will present some sensitivity analysis results. These results will help us
decide the importance of the role of each of the parameters in the optimization problem.

This information will be useful in determining how accurately each of the parameters should

be measured.
4.5.1 Optimal Value Sensitivity Analysis

W- will present sensitivity analysis resnlts in this subsection for the case of a single kill
probability and 2 single lethality probability. The following baseline problem will be used:
Baseline Problem Definiti

Number of weapons: M = 200,

Number of targets: N = 100,

Number of assets: & = 10,

Number of targets aimed at each asset: ng = 10, k=1,...,10,

Value of each asset: |V =1, k=1,...,10,

Kill probability of each weapon-target pair: p = 0.8,
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Lethality probability of each target: = = |.

We will vary the parameters p, 7, M and n; individually and see how the optimal value
of the problem changes. As we vary the kill probability p we will denote the optimal value
by J(p). Similar notation will be used for the other parameters. Since we do not have an
algorithin that guarantees optimal solutions for the problem, we will compute upper and
lower bounds on the optimal value. The algorithm presented in section 4.2 will be used to
compute a solution to the problem as well as an upper bound on the optimal value. The
expected value of the sub-optimal solution will be plotted with a solid lire. The upper
bound will be plotted with a dashed line. The plot for the optimal value will lie between
these plots. Note that for some of the plots the algorithm produces the optimal solution.
In these cases no dashed curve will be visible.

In figure 4.7 we have four plots. In plot (a) the upper and lower bounds on the optimal
value is plotted versus the kill probability p which is the same for all weapon-target pairs.
Note that the dashed curve is almost identical to the solid curve. This means that the
solution produced by the algorithm is almost optimal for all values of the kill probability.
Also note that for the values of interest to us (0.5 < p < 0.9) the optimal value is very
sensitive to the kill probability. Small increases in the kill probability can result in large
increases in the optimal value.

In plot (b) the optimal value is plotted versus th‘(?letha.lity probability . Note that
there is no dashed curve because the solution was optimal. Here we find that the optimal
value decreases almost linearly with the lethality probability. It therefore appears that the
lethality probability does not play an important role in the optimization problem.

In plot(c) we have plotted the optimal value versus the number of weapons for M =
100,150,200,250, 300. For these values of M the algorithm produced the optimal solution.
We find that the optimal value increases almost linearly with the number of weapons.

In plot(d) the upper and lower bounds on the optimal value is plotted versus the number
of targets aimed for each of the assets. We kept the weapon-target ratio fixed at 2:1. Again

note that the algorithm is optimal for most of the plot. Here we find that the plot appears
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Figure 4.7: Upper and iower bounds on the optimal value for the baseline problem, as a
function of (a) the kill probability (b) the lethality probability (c) the number of weapons
and {d) the number of targets aimed for an asset (with M = 2N),
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to be that of a piecewise-linear convex function. We also find that as the number of targets
aim-d for each asset increases, the optimal value decreases. This implies that, if the number
of assets is kept fixed then as the size of the attack increases (i.e ni increases for each k)
the defense’s arsenal must be increased at a greater rate Lo maintain the same level of
performance. This gives the offense a tremendous advantage because, if we keep the kill
and lethality probabilities fixed, then a small increase in the offense’s arsenal has to be
countered by a larger increase in the defense’s arsenal if the defense wishes to maintain the

same level of performance.
4.5.2 Optimal Solution Sensitivity Analysis

In the previous sibsection we considered what happens to the optimal value as various
problem parameters were varied. In this section we will see what happens to the optimal
solution of the problem as each of the parameters is varied. We will first present some
analytical results and then some numerical results.

Let us assume that all weapon-target pairs have a kill probability of p and that all
targets have a lethality probability of r. We will also assume that the number of targets n,
aimed for an asset, is the same for all assets. Finally we will assume that all assets have a
value of unity. Since we do not have an optimal algorithm for the problem we will consider
the solution produced by the sub-optimal algorithm presented in section 4.3. Because of
the nature of the algorithm and the uniformity of the problem being studied, the solution it
produces will have the property that all but one of the defended assets will be defended by
the same number of weapons. The number of weapons assigned to the other defended asset
will be less than or equal to the number of weapons assigned to the others. Because of this
property, a more convenient way to state the solution is in terms of the number of assets
defended. Given this information one may then compute the optimal number of weapons
to be assigned to each of the targets.

We will compute an approximate value for the number of assets defended in the solution

of the algorithm. For £ € Z,, let J(kn) denote the expected surviving value of an asset if
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k weapons asre assigned to each of the targets aimed for it. Note that since all assets are

identical then this function is the same for each. We have
J(kn) = (1 - x(1 - p)*)™.

Define ¢ € Z, as follows:
In) o In)

e

In other words the tangent to J(nk) through the origin touches the function at the point
k = £. Note that, because all assets are identical, the value of £ is the saime for all. The
MMR algorithm will assign nf weapons to the defense of each of the defended assets but
one. The remaining weapons will go to the other defended asset. Therefore the number of

defended assets, which we will denote by d, is given by:

_M
T ne’

d
If dis not integral then |d| assets will be defended with ¢n weapons each and another asset
will be partly defended with the remaining weapons. Recall that the function J(kn) is at
first convex and then becomes concave. If we relax the constraint the k is integral then we
can find the point at which J changes from a convex to a concave function by fincding the
point at which its second derivative changes sign (from positive to negative). Setting the
second derivative to zero we find that this change occurs at the point k given by

—log(nn)

k= .
leg(1 - p)

in other words the vaiue of &, k, at which this occurs satisfies the equation
nr{l —p)F = 1.

Note that nr(1 -~ p)I‘ is the expected number of surviving targets if k weapons are assigned
to each of the targets. This implies that if the expected iiumber of surviving targets is

greater than one then the objective function is convex otherwise it is concave. Note that,

in general, k is non-integral so we need to say that J(nk) is convex if k& < [_kj wnd it is
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concave if k > [k]. Therefore a good approximation for the value of £ is [k]. Using this
approximation we have

g —M (4.13)

" i)

Note that if d > K then all of the assets are defended. Let us consider an example. Con :ider
the following problem: M = 200,N = 100,K =10,V = I,n = 10,p = 0.7,7 = 0.8. The
solution obtained by the sub-optimal algorithm is to defend all assets with 2 weapons per
target. Using our approximation we find d = 10; so that in this case the approximation is
good. Note that d varies linearly with M, it varies roughly inversely with N, it increases
as T decreases, and it increases as p increases. All of the results are as we would expect.
This approximation provides us with a simple estimate of the optimal strategy of any given
problem.

We will next examine how the solution of the algorithm presented in sectic . 4.2 varies
with different parameter values. Note that in subsection 4.5.1 we considered the sensitjvity
of the optimal value to changes in the parameter values. Here we are considering the
sensitivity of the optimal solution. We will use the same baseline problem that was used in
subsection 4.5.1. Because of the symmetry of the problem, the solution can be completely
characterized by the number of defended assets. Note that in the solution to the problem,
the same number of weapons is used to defend each of the defended asscts except one. The
number of weapons assigned to this special asset is less than the number assigned to cach
of the others. We will include this special asset, as a fraction, in the number of assets
defended. This fraction is the ratio of the number of weapons assigned to defend the asset
and the number of weapons assigned to each of the other defended assets. In figure 4.8 we
have plotted the number of defended assets vs each of the parameters p,7, M and n.

In plot (2) of figure 4.8 we have plotted the number of defended :ssets versus the kill
probability, Note that small changes in the kill probability can result in significant changes
in the strategy. Plot (b) contains the plot for the lethality probability. Here we find that
changes in 7 do not affect the optimal strategy. This suggests that the lethality probability

plays a small role in the optimization problem. Plot (c) contains the plot for the number
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of weapnns. As the number of weapons increases more assets are defended until they are
all defended. Plot (d) contains the plot for the number of targets per asset with a fixed
2:1 weapon to target ratio. Note the sudden change in the defense strategy as n, changes
from 12 to 13. For the case ng = 12 the defense assigns two weapons per target te defend
its assets. However, for the case n, = 13, two weapons per target is not enough so it has
to start using three weapons per target for 6 of the assets and two weapons per target for
one of the assets (which will be included as a fraction of 2/3). Therefore the defense only

defends 6% assets.
4.5.3 Asset Value Sensitivity Analysis

In this thesis we do not plan to address the question of how the various parameters {p,;, Wi
etc.) of the problem are obtained. However, in deciding values for these parameters one
should have an idea of the ranges within which they should lie. For example, if the spread
of the asset values is small then the solution of the resulting problem might be the same
as the solution of the problem in which all asset values are equal. If such is the case, then
either all assets can be considered as having the same value or one must increase the spread
in the values to reflect the fact that some assets are of greater value than others. If, on
the other hand, the spread of the asset values is large, then the solution of the.resulting
problem will be such that no weapons are assigned to the assets of low value. If such is the
case, then either the low valued assets could be removed from the problem to decrease its
size, or if one really wants to consider thiese low valued assets as a part of the problem, then
the spread in the values should be decreased. This example suggests that there is a range

within which the values should be assigned if the resulti meaningfu

. : tor 1. 1 Tn
ing solution is to be Meaningiit. &

AL
this section we will compute such a range for the asset values for a simple problem.
We will investigate the sensitivity of the optimal assignment of a static Asset-Based

problem to changes in the asset values. We will consider the case of two assets under the

assumptions that each is attacked by n targets and that the kill probability of cach weapon-

target pair is p and that the lethality probability of each target is 1. We will also assume
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that the value of one of the assets is unity while that of the other is W with W > 1. This

last assumption does not restrict the class of problems considered since the values of the

" assets can always be scaled so that the smaller valued asset has a valne of unity. We are

interested in the value of W above which only one asset is defended (the asset of value
W) and below which both of the assets are defended. We will assume that the number of
weapons is a multiple of n (i.e. M = kn).

The optimal assignment for this problem has the property that the optimal number
of weapons assigned to the defense of each of the assets is a muliiple of n. This can be
shown as follows. Between multiples of n the expected surviving value of an asset is convex
(see section 4.2). Therefore, for all but one of the assets, the number of weapons assigned
to the defense of the asset must be a multiple of n. Since M is also a multiple of n
then the number of weapons assigned to the other defended asset must also be a multiple
of n. Therefore the property holds. Let this multiple be x; for the higher valued asset
and Ky for the other. Since W > 1 the possible optimal values of the pair (x;, ko) are
(5,0),(k = 1,1),...,([£/2], |x/2]). Let W; denote the value of W at which the sciution

(%,0) changes to the solution {x — 1,1). We have,

= (1-(-p))
W| - (1 R (1 __p),g)n —_ (1 - (1 . p)‘_‘-)n.

The value of W at which the defense’s strategy changes from defense of one asset to the

deferise of both assets will be the maximum, over i, of W;.

W* = max W, (4.14)
0<i<|n/2}

For values of p close to unity, and/or for small values of n, a reasonable approximation that

can be made is the following:
(I-(1=p)Pxl-n(l-p)" V¥V 0<ig][r/2].

Using these approximations we have that:

= PATAY T | _ i
Wi ~ (1-Q-p" (1 =p)
n(l - p)s
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Let us take i to be a continuous variable and set the derivative of W;, with respect to i,
to zero. This leads to the equation n(1 -- p) == 1, One can show that this is the only
stationary point and that the function is concave in the region around this stationary point.
This leads to the conclusion that the value of ¢ satisfying this equation is the point at which

the function is maximum. Substituting back into the equation we find that

N O -

T i~ p)
If we make the approximation (1 — 1/n)* =~ ¢~! then we have

. 1
S i (=)

If we assume that x is even and that the weapons are divided evenly between the two assets
then the expected number of targets which survive in each asset is given by £ = n(1 - p)g‘.
We can write W* = (e£?)"!. Therefore as the cxpected number of surviving targets
decreases, the ratio of the asset values above which a single asset is defended, increases.
Also note that if £ > :}: = 0.6 that it is always optimal to assign weapons only to the
higher valued asset.

Table 4.1 contains the exact values of W= for the case of M = 4n (ie a 2:1 weapon to
target ratio) for various values of p and n. Table 4.2 contains the values obtained by using
the approximation [en?(1 — p)¥)~1.

The results in tables 4.1 and 4.2 suggest that our approximation to W* is a good one
for the problems which are of interest to us. If this is the case then it implies that the factor
which determines the range of the asset values is the expected nuraber of surviving targets
if the defemse attempis v save boih assets. The expected number of surviving tarzets is
called the target leakage in the literature. Therefore the number of assets defended should

be such that the resulting target leakage is sufficiently small.
4.6 Concluding Remarks

In this chapter we presented the Static Asset Based WTA pioblem as well as a sub-optimal

algorithm for solving it under the assumption of target dependent kill and lethality probabil-
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9=0.6 | p=0.7 | p=0.8 | p=0.9
n=2 4.9 13.2 | 50.3 450
n= 1.2 34 16.2 182
n==6 1.0 1.4 6.9 99
n=_8 1.0 1.0 34 60
n=10| 1.0 1.0 2.1 39
n=12| 1.0 1.0 1.6 26
n=14| 1.0 1.0 1.3 18

' Table 4.1: The value of W above which only one asset is defended. M = 4n
e - 2=0.6 | p=0.7 | p=:0.8 | p=0.9
n=2| 3.6 11.3 | 57.5 920
o n=4 | 1.0 2.8 | 144 | 230
n=6 1.0 1.3 6.4 102
n =8 1.0 1.0 3.6 57
a=101 1.0 1.0 2.3 37
n=121{ 1.0 1.0 1.6 25
n=14 1.0 1.0 1.2 19

Table 4.2: The value of W above which only one asset is defended using the approximation
[en?(1 - p)*|~*.

ities. Computational experimentation suggests that the solution produced by this algorithm
is either optimal or near optimal for most problems. We also presented some sensitivity
analysis results which will prove helpful in choosing parameter values for the problem.

The main conclusions that can be drawn from the results of this chapter are as follows:

o The general problem is difficult because it is a more general version of the Static

Target-Based problern which has been shown to be NP-Complete [2].

¢ In the case of a single class of weapons the algorithm that we have proposed (in section
4.3) provides near-optimal solutions. We conjecture that, if this approach is used as

a heuristic for the case of multiple weapon classes then the resulting solution will also

be near-optimal.

o The optimal value and optimal solution of the problem is quite sensitive to changes in

the kill probability, but appears to be insensitive to change: in the lethality probability.

e If the numbor of assets, ard the kill and lethality probabilities are kept fixed then,
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as the number of offense weapons increases, the number of defensive weapons must
increase at a greater rate if the defense wishes to maintain the same level of perfor-

mance.

The efficient solution of static Asset-Based problems will require the use of parallel
coputers. Therefore, it will be necessary to investigate parallel algorithms for solving the
problem. Also the information and computers needed to solve the problem may be ge-

ographically dispersed. This suggests the use of distributed algorithms for the problem.

Some preliminary work in this area can be found in [18] and {19).




Chapter 5

The Dynamic Asset-Based
Problem

In this chapter we will consider the dynamic version of the Asset-Based WTA problem.
Recall that the Target-Based WTA problem, discussed in chapter 3, is a special case of
the Asset-Based Problem in which a single target is directed at each asset. Also all static
problems are special cases of the corresponding dynamic problems. Therefore the three
previously studied problems, the Static Target-Based WTA problem, the Dynamic Target-
Based WTA problem and the Static Asset-Based WTA problem are all special cases of
the Dynamic Asset-Based WTA problem. Hence, this problem is the most difficult and
complex because of its generality. However, it is also the most important because of its
generality. Simplifying assumptions are needed to reduce the complexity so as to derive
efficient suboptimal algorithms.

We will make the assumption that the kill prebability of a weapoun-target pair and the
lethalit

A

; probability of a target-asset pair depend solely on the asset to which the target is

or thacn nocisymnitss~n
i [4

H +han £
85T GSRUIMPLUICHS wae 1

wimber of decision variables per siage equals the
number of assets. Without these assumnptions the number of decision variables per stage
equals the product of the number of available weapons and the number of surviving targets.
Therefore, the assumptions greatly reduce the dimensionality of the problem.

These are restrictive assumptions which will be violated in most practical problems. If

the assumptions do not hold the solution method described in this chapter can still be ap-
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plied after some modifications have been made. There would, however, be a degradation in
the performance of the method. This degradation would vary with the degree by which the
assumptions are violated. Furthermore, in a practical situation, if each defensive weapon
cannot engage all offensive targets the dynamic strategy will lose some of its performance
advantage over the static strategy. Therefore, although we wili conclude that the perfor-
mance advantage of the dynamic strategy is roughly twice that of the static strategy, in
practice this performance advantage will be less.

In section 5.1 we will define the general problem and discuss its complexity. In section
5.2 we will give & mathematical statement of the problem under the assumptions of asset
dependent kill and lethality probabilities. Because of the extreme complexity of the probtlem,
we will only consider the case of two stages. We will show that, under the assumptions
made, the decision variables are the number of weapons to be used in the first stage and
the optimal assignment of these weapons. In section 5.3 we will discuss the problem of
finding the optimal number of weapons to be used in stage 1. We will find that this is a
difficult problem because of the presence of multiple local maxima. In section 5.4 we will
assume that the optimal number of weapons to be used in the first stage is known and
discuss the problem of finding the optimal assignment of these weapons. We will present a
sub-optimal algorithm for this problem. [n section 5.5 we will provide a heuristic based on
approximating the Asset-Based objective function by a Target-Based one. This approximate
problemn can then be solved by the methods presented in chapter 3. We will find that the
main shortcoming of such an approach is that it cannot produce a truly preferential defense
strategy. In section 5.6 we will present several numerical results. We will find that, in
general, a dynamic strategy outperforms a static one by a factor of two. Finally in section

5.7 we will make some concluding remarks.
5.1 Problem Definition

As in the case of the Dynamic Target-Based problem, this problem consists of a number

of time stages. In each stage the results (survival or destruction of each target) of the
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engag ments of the previcus stage are observed. Based on these observations, a subset of
the remaining weapons is chosen and assigned to the surviving targets. The results of the
engagements of this assignment is then observed and the process is repeated. Hence we
are dealing with a “shoot-look-shoot-.,.” strategy. The objective is to choose and assign
weapons at each stage so as to maximize the total expected value of the surviving assets at
the end of the final stage of the engagement. Note that the problem will be re-solved after
each stage because the resalts of that stage can be observed. This means that one is only
interested in obtaining assignments for the present stage. By the principle of optimality, it
is implicitly assumed that optimal assignments will be used in all subsequent stages.

We will first define the general problem. In the next section we will censider the special
case of two stages under the assumptions that the kill probahility of a weapon-target pair
depends solely on the asset to which the target is directed, and the lcthality probability of
a target-asset pair depends solely on the asset. The foliowing notation will be used. The

definitions of all additional notation can be found in Appendix A.

K % the number of defense assets,

T % the number of time stages,

N % ihe initial number of targets,

M % the total number of weapons,

Wi 4 the value of asset k, k=1,2,...,K,

G def the set of targets aimed for asset k initially, k = 1,2,..., K,

k()= the number of targets aimed for asset k in staget, k = 1,2,..., K,
ydef Y R IR . . e R . .
pij(t)= ihe probability that weapon j destroys t urget ¢ in stage t if assigned to it,
i=11...,N, i=12,.... M,

the lethality probability of target i on the asset to which it is aimed,

i=12,...,N,

The decision variables will he denoted by:

T = 1 if weapon j is assigned to target i in stage 1
71 0 otherwise
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Note that we only need fo solve for the decision variables in stage 1. The decision vari-
ables for all subsequaent stages will be obtained after the outcome: of the weapon-target
engagements of the previous stage is observed.

The target state of the systcm at the end of the first stage will be defined as the set of
surviving targets. This state will be denoted by an N- dimensional binary vector @ € {0,1}"

and represented by

w = 1 if target i survives stage 1
71 0 if target i is destroyed in stage 1.

The weapon state of the system at the end of stage one will be defined as the set of available
weapons. This state will be denoted by an M-dimensional binary vector & € {0,1}* and

represented by:

W = 1 if weapon j was not used in stage 1,
77 ) 0 if weapon j was used in stage 1.

The target state evolves stochastically. The stochastic evolution of the target state in
stage 1 depends on the assignment decisions made in stage 1. Given a first stage assignment
of {z;;}, the state at the start of the second stage is an /N-dimensional random vector.
The probability that u; is 1 is the probability that target i survives the first stage. The
probabilivy that u; is 0 is the probability that target i is destroyed in the first stage. The

distribution of the random variable u; is therefore given by:

=1 j=1

M M
Priu; = k] = k JT(1 - pi;(1))™ +[1 - &) {1 = TI(1 = pis(13)™ } , (5.1)

for k=0,1, i=1,2,...,N.

Equation 5.1 will be called the target state evolution of the system.
The evolution of the weapon state is deterministic and depends on the assignments made

in the first stage. The evolution is given by:
N
wi=1- &j, j=12...,M. (5.2)
f=1

This simply says that weapon j is available in the second stage if and only if it is not used

in the first stage. Equation 5.2 will be called the weapon state evolution of the system.
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We will let J3 (@, %) denote the optimal value of a T ~ 1 stage problem in which the
initial target state is # and the initial weapon state 1#. This problem has the same form
as the T stage problem which is being defined. The T' -~ 1 stage problem can be defined in
terms of the optimal vaiues of 7' ~ 2 stage problems etc. The T — (T — 1) ar single-stage
problem can be defined in terms of the optimal values of 0-stuge problems. If the target
state at the end of the final stage is @ and the weapon state at the end of the final stage is
@ (which would be [0,...,0] for an optimal strategy) then the optimal value of the 0-stage

problem is given by

K
J;(‘IT,‘LE) = Z Wk H (1 - 7!',"“,').

k=1  i€Gy
In other words this is the value if no more weapons are assigned and, targets which have

been destroyed have a lethality probability of 0 while each target i which survived all stages

has a lethality probability of ;. We can now state the problem as follows.

Problem 5.1 The Dynamic Asset-Based problem (DAB) can be stated as:

minJ; = Y. Prli = 5)J;5(, F)
{1‘.‘)} JE{O,]}N
subject to z;; € {0,1}, i=12,...,.N j7=12,...,M,

N
with w; =1~ }__’ Tij.

=1

The objective function is the suin over all possible stage 2 target states of the probability of
cccurrence of that state times the optimal value given that state. Note that the distribution
of the stage 2 target state and the stage 2 weapon state hoth depend on the first stage
assignment. The first constraint restricts each weapon to be assigned t most once in the
first stage. The second constraint is due to the weapon state evolution.

This problem is considerably more difficult thi the static one. This can be illustrated

by attempting to use a straightforward dynamic programming approach to the problem.
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Let us consider a two stage problem. The number of possible weapon subsets that can be
chosen in the first stage is 2M. If m, weapons are used in stage 1 the number of possible
assignments that must be checked is N™, If N of the N targets are cngaged in the first
stage the number of possible outcomes is N If N of the N targets survive stage 1 and
™y weapens are available in stage 2 then the number of assignments that must be checked
to obtain the optimal value for this outcome is N™2, These numbers show the enormous
aumber of computations that will be required if a straightforward dynamic programming
approach is used. Note that to simply evaluate the expected value of a first stage assignment
requires a tremendous computational effort. Besides the problem of dimensionality there
is also the difficulty of solving the static problem in the last stage. Several of these static
problems must be solved corresponding to the different possible outcomes. Recall that the
objective function for the static problem was neither convex nor concave. Since there are no
efficient algorithms for obtaining the optimal value of the static problem, we cannot even
evaluate an arbitri.ry assignment for the dynamic problem. These difficulties have forced us
to make some simplifying assumptions. We believe that this simplified problem will reflect

the overall behaviour of the more general problem.

5.2 The Two-Stage Problem with Asset Dependent Kill and
Lethality Probabilities

Because of tremendous complexity of the general version of the problem we will make
some simplifying assumptions. We will only consider the case of two stages since the com-
plexity of the problem grows exponentially with the number of stages. We will make the
assumptiov that the kill probability of a weapon-target pair depends solely on the asset to
which the target is directed. Therefore the kill probability of any weapon on a target aimed
for asset k£ will be denoted by pr. We will also assume that the lethality probability of a
target-asset pair depends solely on the assct. Therefore the lethality probability of each of
the targets aimed for asset & will be denoted by .

Because of the assumption of weapou independent kill probabilities, we can let the deci-
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sion variables be the number of weapons assigned to each target in each stage. Furthermore
the assumptions imply that all targets directed to a specific asset are identical. Therefore,
in each stage, the number of weapons asigned to any two targets aimed for the same asset
cannot differ by more than one. In other words the weapons assigned to defend an asset
in a stage must be spread as evenly as possible among the surviving targets aimed for that
asset, This result can be used to simplify the problem even further by defining the decision
variables as the number of weapons assigned to defend each asset in each stage. We can
therefore let the decision variables be my, the number of weapous to be used in stage one,
and X € Zf the assignment of these m; weapons in stage 1, where X represents the num-
ber of weapons assigned to defend asset k in stage one. The individual target assignments
can be obtained by spreading these weapons as evely as possible among the targets aimed
for asset k.

Our assumptions can also be used to simplify the representation of the target state.
Since all targets directed to 2 specific asset are identical then we can represent the target
state by 7(2) where nx(2) is the number of targets aimed for asset k that survive the first
stage.

The state 7(t) of the system evolves stochastically. This evolution depends on the
weapon assignments made. Because we assumed that the engagement of a target by a
weapon in a stage is independent of all other engagements in all stages then, given an
assignment for the first stage, the state ng(2) of asset & evolves independently of all other
asgets, The state for each asset evolves as follows. To simplify the expression we have left

out the subscript k from the variables nx(-), p(+), x(-).

Prn(2) = jIX =x] = (5.3)
(-
- (x n(z)tzf‘rsl)q(l)tr;ﬁ[l — g1y pnOl =t
=¢
y (n(l)t;ﬁﬂ +£n(l) - x) )= OESI[1 — g()EPOLRE 1) -
j—

for

i=0,1,...,n(1).
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where

ﬁ:rfxa.x{j+x n(l)([ 1)J+l ,0} and Z—mm{k—-n(l)l (1)J 7}

This evolution can be explained as follows. If Xi is a multiple of ng(1) then ng(2) is a
binomial random variable with success probability! (1 —pk(l));{ﬁj. If X} is not a multiple
of nk(1), then some targets will be assigned | “)J weapons while the others will be assigned
f;%] weapons. The distribution of the random variable n4(2) is obtained by convolving
two binomial distributions. The success probability of one of these distributions is given by
(1- p(l))l"(l)J while the success probability of the other is given by (1 ~ (1))L"“)J The
variables £ and 7 were introduced to take care of the boundary conditions of the convalution.

Let J7(71(2), M) denote the optimal value of the second stage problem with target state

i(2) and M weapons. Also let § denote the set of all possible outcomes of the first stage
S={5e 28|s €{0,1,...,n(1)}}.

We will state the two-stage problem in terms of the optimal values of single stage problems.
The single-stage problermn is simply a static problem. However, we can use the same recursive
definition that was used for the two-stage problem to define the single-stage preblem in terms
of optimal values of 0-stage problems. Note that in the op.imal strategy no weapons will
be available after the second stage. Denote the target state after stage two, the final stage,

by 7(3). The optimal value of the 0-stage problem is given by:

K

J:;('IZ(:}), 0) = Z I’Vk(l — 7"/‘)""(0).
k=1

'See Appendix A for the definition of a binomial random variable as well as the term success probability.
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In other words J3 is the total expected value of the surviving assets if the target state is

7(3) and no more weapons are fired.

Problem 5.2 The Two-Stage, Dynamic, Asset-Based (TDAB) problem with csset depen-
dent kill and lethality probabilities can be stated as:

maxJy = Y Pr{ii(2) = 3lJ3(5 M - m))
7€S
subject to Xi € Z,, k=1,...,K

K
and E X = my.
k=1

One can see that even the statement of the problem is a foriuidable task even under the
assumption that the kill and lethality probabilities are solely asset dependent.

By the principle of optimality, the assignments used in the second stage must be optimal.
Therefore, the only decision variables over which the objective function is to be sptimized
are my and X, which is the number of weapons to be used in the first stage m; and the
assignment of these weapons to assets X. We will therefore denote the optimal value for

the case in which m; weapons are used in the first stage with a:signmeut X by Ji{my, f).

Problem 5.3 The Dynamic Assel-Based problem may also be stated as:

max {max Jl(m!,)&—')l
m162+ lXEZf

K
subject to Z Xy = my,
k=1

and 0<my < M,

If we fix m; then the inner subprobiem can be written as
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Problem 5.4 (Assignment subproblem):

max Jl(ml,f(‘)
{Xezk}

K
subject to Z Xk = my.
k=1

If we can solve the assignment subproblem, then the original problem can be solved as
follows. Let X* denote the optimal assignment of the subproblem 5.4. Note that this
optimal assignment depends on the value of my. However, this value is implicit in the
solution since 3°R_, Xy = my. The solution to the original problem may now be obtained

by solving the following:

Problein 5.5 (Main problem):

max Jy(m;, X"
mi€Z, l( Iy )

subject to 0<my < M.

Each of the problems 5.4 and 5.5 will be considered separately. Our efforts will be concen-
trated on the solution of problem 5.4 since we will show that problem 3.5 has many maxima

and hence, in general, = global : -arch will Lkave to be dore to obiain the optimal solution.
5.3 Optimal Number of First-Stage Weapons

Let us assume that we can solve the assignment subproblem 5.4 and consider the problem
5.5 for the case of 7" == 2. Recall that, for the Target-Based case, the corresponding problem
had multiple mirima. Since the Target-Based problem is a special case of the Asset-Based
problem then one can conclude that problemn 5.3 will also have multiple local maxima.
Consider, for example, the case M = 14,K = 3,7 = [1,1,1] and pi(t) = 0.9. (Note that

this is the Asset-Based version of the problem that was used to illustrate thal, for the

‘larget-Based problem, the expected value as a function of the number of weapons uvsed in
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Figure 5.1: An example of the two-stage dynamic asset-based problem for which multiple
maxima exists. Plot of the expected two-stage value J1(m;) minus the static value J,(M)
vs. the number of weapons used in stage 1, m;, with M = 14, K" = 3,7(1) = [1,1,1],p = 0.9.
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the first stage had multiple minima). In fi; ure 5.1 we have plotted Jl(ml,)—("(ml))- Ji(M)
. versus m for this problem. The optimal value of the static strategy was subtracted from
that of the dynamic strategy to obtain a scale orn which the different maxima are visible.
Furthermore, we have only plotted tl : cases m; = [2,...,12]. Again this was done so that
the different maxima will be visible. The difference in valie of the local maxima is so small

i that for all practical purposes the solution for any of them will be satisfactory.
I Therefore, to obtain the global maxima one must essentially do a global search. For
most practical purposes however, a local maximum will suffice. To obtain a local maximum
a simple Jocal search algorithm (like the one presented in section 3.4 for the Target-Based
version of the problem) can be used. If several processors are available then the local search
algorithm can be run on each of them simultancously with different initial solutions. The

best local maximum may then be taken.

Problem 5.3 is an important one since it is used to determine the optimal number of
weapons to use in the present stage. However, it is also a difficult problem to solve hecause
the objective function is not unimodal. Our belief is that in practice any local maxima will

suffice since we conjecture that the difference in the values of any two local maxima will be

negligible compared to the value of any one of them. The reason why all solutions cannot
be checked is because of the computational requirements for evaluating each solution. This
computation can be reduced by making good approximations. One approach that has been
used [10] is to approximate the marginal return of increasing the value of m; by one and
o decreasing the value of m; by one. If this is positive then m; is increased and the process is
repeated. Similarly the marginal return of decreasing the value of mi; by cne and increasing

the value of m; by one can be approximated etc.

5.4 Optimal Assignment of the First-Stage Weapons

In this section we will consider the assignment subproblem 5.4. In this problem the number

of weapons to be used in the first stage is fixed and the objective is to assign these weapons

optimally. Note that for the static version of this problem we were able to obtain a sub-
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optimal algorithm but not an optimal one. In this section we will provide a suboptimal
algorithm as well. This algorithm is similar to that used to solve the static problem in that
it approximates the objective function by a concave, separable one. We will illustrate the
algorithm for the case of two stages.

Since there are only two stages then ma = M — my. Let Jl(f) denote the expected
value for a first stage assignment of X, (with S"h_; X& < my), and m; weapons are assigned
in the second stage optimally. The function J;(X) is non-separable (with respect to the
assets) and non-concave We will approximate this function by a function J,(X) which is
both separable and concave.

Let e, denote the kP column of the K'-dimensional identity matrix and let X, be a non-
negative integer. Consider the one-dimensional function Jy(Xyer). This is the expected
value if, in the first stage, X weapons are assigned to asset k& and no other weapons are
assigned in this stage while in the second stage m; weapons are assigned optimally. An
example of this function is given in figure 5.2 (the solid line). For this example we used
K = 2,k = 1,7(1) = [16,10],W = [1,1], and §{t) = [4,.4). The number of weapons used
in stage 2 was fixed at 20.

Note that, as a function of multiples of n, the function is convex and then becomes
concave. This property was observed for the static problem as well. Hownver note that,
between multiples of n the function is convex for small X and concave for larger values of X'.
This is unlike the static case for which the function was always convex between multiples
of n. The reason for this is that, even if only a subset of the targets aimed for an asset
are engaged, there is still a significant increase in value because the remaining targets will
be engaged in the second stage. We have also included the cencave hull (the dashed line)
of the function in the plot. We will denote the concave hull of this function by Ji(Xkex).

Note that the concave hull is a very good approximation to the function.

Let us denote the K .dimensional zero vector by . The approximation to the function
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Figure 5.2: An example the expected two-stage value, J;(X ). plotted along a coordinate
direction for a two-asset problem.
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.II(X) which we will use is given by:
K

h(X) = n(0) + kZ;[L(Xkeu - h(@) (5.4)
where the function Ji(Xyex) is the concave hull of the function J;(X) along the k* coor-
dinate direction. Along the coordinate directions this approximation is the concave hull as
given in figure 5.2. The values for the interior points arc obtained by summing the increases
along each coordinate and adding the value at the origin. Note that the value at the origin
is the optimal value of the corresponding static problem with m; weapons since no weapons
are used in stage 1.

Note that the function J}(X’) is concave and separable with respect to the assets. Fur-
thermore, note that if my = M, (i.e. all weapons are used in the first stage) then the
problem is a static onc and the approximation used is the same as the approximation that
was used in the suboptimal algorithm for the static problem that was presented in chapter
4. Also note that if only enough weapons are used in stage 1 to defend one of the asseis,
then the approximation is the same as the exact function because along the coordinate
directions through the origin both functions are equal in the region in which the asset is

defended. Therefore, in the limits of small and large values of 7ny the approximation is

good.

—»

In figure 5.3 we have plotted the function J;(.X') versus X; and X, for the example used
for figure 5.2. In figure 5.4 we have plotted the corresponding approximation J—l()f). We
ouly evaluated the functions at points where X; and X, were multiples of n. Note that the
approximation is good if X; > 20 and X; = O or if X7 2> 20 and X{ = 0. This iz where
the solution will lie if only oune of the assets is defended. The approximation is also goed in
the region X3 > 20, X3 > 20. This is where the solution will lie if both assets are defended.
Also note that the approximation is an upper bound on the true function. The algorithm
is given in figure 5.5.

The suboptimal selution is obtained by solving the problem with the approximate func-

tion as the objective. The value of this solution is then evaluated using the exact function.
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Figure 5.4: The concave hull approximation, J;(X), of the function J1(X) given in figure
5.3.

procedure DAB
begin
Pick a value for m,;
Compute the approximate function f;(/\.’.);
Use MMR algorithm to assign the m, first stage weapons using
J1(X) as the objective function;
This assignment will be the sub-optimal solution for the dynamic problem;

Evaluate value of assignment using simuiations;
end -

Figure 5.5: Algorithm for the Dynamic Asset-Based problem
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However, since the approximate function is an upper bound then if we evaluate the solution
asing the approximate function then we can obtain an upper bound on the optimal value

of the problem.

Theorem 5.1 The function jl()'f) defined by equation 5.4 is an upper bound to the funciion
JI(X); i.e
j}(/f) Z Jl(X. for X € Zf

Proof: Let us first show that the marginal return of adding weapous to an asset decreases
as the number of weapons assigned to the other assets increases. Let us first consider the
case in which weapons are being added to the defense of two assets j and k. We want to

show that:
Ji(X + xker) = 1(K) 2 Ji(X + xke + x5e5) — J1(X + xje;)-

where xx and x; are positive integers. Let E(r;,ri) denote the expected value given that
r; of the targets aimed for asset j survive stage 1 and that ry of the targets aimed for asset

k survive stage 1. We then have:

J(X + xeer) = T1(X) = I (X 4+ xuex + x565) + N X + xje5) = (5.5)
n,(1) na(1)
= Z Z Pr(n;(1) = r;) Pr(ng = ri)[E(n;, re) + E(rjong) = E(njyng) - E(rj, )]

ry=0 ry=0

Consider the difference
E(n_,-,rk)+E(rj,nk) - E(nj,n;,)—E(r,-,rk). (5.6)

If r; = nj or ri = ng. then this difference is zero. Let us therefore assume that rj < n;j
and rp < ng. The functi n E is the expecred value of a static problem. Consider any
outcome 7(2) of stage 1 and consider a new problem in which each asset 7 is duplicated
and the duplicate # has the same number of targets aimed for it. This is done for all assets

except assets j and k. For asset j we will assume that the original is being attacked by n;

targe*s while the duplicate j' is being attacked by r; targets. For asset k we will assume
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that the original is being attacked by n; targets while the duplicate k' is being attacked
by ri targets. Let S denote the set of the original asscts except j and k and let S denote
the ;. t of the duplicate assets except j' and k'. The number of weapons for this problem
will also be doubled to 2m;. Consider the optimal solution of this new problem. If assets
; J and k are defended, then the number of weapons assigned to them will be greater than
the number assigned to j' and k’. On the other hand if they are not defended then the

! number assigned to j’ and k' will be greater than those assigned to j and k (which is zero

o in this case). Therefore if we solve the problem under the restriction that m, weapons are
to be assigned to the assets S U {j,k} and m, weapons are to be assigned to the assets
S*U{j',k'}, then the resulting optimal value will be less than or equal to the optimal value
of the problem under the restriction that mq weapons are assigned to the assets $ U {j’, k}
and mg weapons are assigned to assets S’ U {7,k}. This is because iu the latter problem
weapons can be cptimally divided between assets j' and & and between assets j and k’. The
i optimal value of the former problem is E(nj, ng)+ E(r;, ¢}, while the optii .al value of the
| latter problem is E(nj,rx) + E(r;,ng). Therefore, the difference 5.6 is non-negative which
implies that the quantity in 5.5 is non-negative.
This argument can be repeated for any subset of assets to conclude that:

K A
| Ji(X) - 1(0) < k);l'[Jl(Xkek) - Ji(0)] £ k‘zl[i,(xkek) = Ji{(0)] = L(X) = 11(0).

Therefore the appreximation is an upper bound to the true objective function. m

Note that evaluation of any feasible assignment in stage 1 requives an optimal algorithin
to compute the optimal stage 2 value for each possible outcome of stage 1. Since we do not
have an optimal static algorithin we ¢;  only compute a lower bound on the expected value
of the solution of the dynamic algorithm. This is done by using the value of the solution
produced by the algorithm described in chapter 4 for the solution of the static problem
in stage 2. There is also the problem that the number of possible vutcomes is enormous. -

To overcome this problrm we use Monte Carlo simulations. We simnlate the first stage
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outcome and then compute the value given that outcome. Several of the simulations are
run and the sample mean is taken as an approximation of the value. These simulations will
be discussed in detail in subsection 5.5.1.

Ar upper bound on the optimal value is obtained as follows. Solve the problem in which
the objective (dynamic case) function is replaced by the approximate function J. We also
need to use an upper bound for the value in the second stage. This can be obtained from

the sub-optimal algorithm that was presented for the static problem.

5.5 A Dynamic Target-Based Approximation to the Asset-
Based problem

In this section we will present a heuristic for the Dynamic Asset-Based problem in which the
Asset-Based objective is approximated by a Target-Based one. In section 4.4 we presented
a method for approximating the objective function of the Static Dynamic-Based problem
with a Target-Based cbjective function. The resulting Target-Based problem could then
be solved using the methods of chapter 3. This provided a sub-cptimal solution for the
Static \sset-Based problem. If we use this approximation in the final stage of the Dynamic
Asset-Based problem then the resulting problem is a Dynamic Target-Based problem. The
methods of chapter 3 can then be used to colve the approximate problem. Such a method
has been used by Castaiion et al [10].

This approach has the advantage that the solution methods for the Target-Based prob-
lem can be used in its solution. The approximate problem is also simpler and requires less
computation than the true (i.e. the Dynamic Asset-Based) problem. There are, however,
imitations to such an appivach, These limitations may lead to poor perfor-
mance of the algorithm in certain situations. These situations are often present in practical
problems. We would like to stress that the two limitations to be presented below apply only

if a pure Target-Based approximation method is used. Modifications can be made to the

Target-Based approximation approach to remedy these limitations. Such modifications?

¥The specific details of these mod:fications were not available to the author.
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have been used in the heuristics used by Castanon et al. Therefore, the limitations to
be described do not apply to their methods. The purpose of presenting the Target-Based
approach and its limitations (if used in its pure form) is to emphasize the fact that one
must be careful in choosing appropriate approximations. Approximations which may seem
“reasonable” may have serious flaws,

The first limitation of the approachk is that it cannot produce a truly preferential defense
when such a defense is preferable. This limitation will appear in problems in which there
are several low kill probabiility weapons (i.e. problems in whick a preferential defense
strategy is optimnal). The reason for this is as foliows. Let us first consider the static Asset-
Based problem. Recall that for this problem, the expected surviving value of an asset as a
function of the number of weapons assigned to defend the asset is a non-linear, monotonically
increasing function. This function is convex if the number of assigned weapons is small and
concave if the number of assigned weapons is large. The shape of this function is what
is responsible for preferential defense strategies as we will next explain. If few weapons
are assigned to defend an asset then the marginal return of adding a weapon is larger
than it was for the previously added weapon because the expected surviving value of the
asset is convex in this region. Therefore, it is advantageous to continue adding weapons
since the marginal return continues increasing. Eventually the number of weapons assigned
would be suck that the expected surviving value of the asset is concave. Henceforth, it
is not advantageous to add weapons since the marginal return is small. This imnplies that
several weapons should be assigned to the assets which are defended and no weapons should
be assigned to the other (undeiended) assets. If a Target- Based approximation is made
the resulting objective function will be concave, even when a small number of weapons are
assigned to defend an asset. Therfore, if such an approximation is made, preferential defense
strategies will not be optimal. Let us now consider the dynamic version of th2 asset-based
problem. In order tc have preferential defense strategies in the first stage the objective

function must have the property that it is convex if few weapons have been assigned. Note

that the approximation used in section 5.3 was chosen so that this property is maintained.

e e e e e e
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However, if a Target-Based approximation is made for the last stage of the problem then
the objective function in the first stage of the resulting approximate preblem will not have
the property that for small numbers of assigned weapons the objective is convex. Therefore,
if a Target-Based approximation is used for the last stage then it is not possible to obtain
a preferential defense in the first stage. However, we will find in the next section that in
some situations it is preferable to use a preferential defense strategy even in the first stage
of the dynamic problem. We will find that the algorithm described in section 5.3 produces
a first- stage preferential defense strategy for such cases., However, if the Target- Based
approximuation is used then a preferential first-stage Jdefense strategy cannot be obtained.
The basic reason for this difference is that the method described in section 5.3 approximates
the first-stage objective function and maintains the important characteristics of the true
function. On the other hand the Target-Based approximation approach approximates the
expected value for the final stage. Therefore the characteristics of this approximation are
carried over inlo the first-stage objective function.

The second limitation of the Target-Based approximation method occurs in problems
in which there are few weapons. Note that this is the opposite of the case considered iu the
previous paragraph (i.e. many weapons). Consider for example the case of two stages with
problem parameter values given by M = 100, N = 100,n; = 10,k = 10.px = 0.8, 14 =
1L,Wg = 1fork =1,...,K. We find that {or the approximate Ta:yet-Based problem all
targets will have a value of unity. Furthermore, since the number of weapons is equal tc the
number of targets then we know that a static strategy will have the same performance as
a static one. Therefore, an optimal strategy for the Target-Based approximation problem
is to use all 100 weapons in stage 1 and to assign one weapor per target. The value of
this assignment is 1.07. Note that this value is even wors» than the optimal valuc for the
Static Asset-Based problem wiiich is 3.32. In the next section we will show that the solution
produced by the method described in section 5.3, is to use 70 weapons in stage 1 and to

defend 7 of the assets with these weapons. The remaining 30 weapons are then used iu the

second stage. The value of this solution is 6.53. Therefore we find that the Target-Based
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approximation method can produce very poor results. In fact for this preblem the value
of the solution produced by the Target-Based approximation method is even worse than
the optimal value for the Static problem. We again can conclude that for certain problems
the pure Target-Based apjroximation method may perform poorly. On the cther hand, the
algorithm described in the previous section (section 5.3) can easily handle the problems for
which the Target-Based approximation method performs poorly.

Qur conclusion is that,in its pure form (i.e. use a Target-Based approximation for the
expected value in the final stage and solve the resulting Dynamic Target-Based problem
to obtain a suboptimal sclution to the Dynamic Asset- Ras-d problem), the Target-Based
approximation approach will not perform as well as the method described in section 5.3.
However, this approach has certain advantages such as simplicity and the fact that Target-
Based algorithms can be used in its solution. For practical problems these advantages may
be more important than the advantage of better performance which is the main advantage of
the method of the section 5.3. Modifications to the Target-Based approximation approach
can be made to remedy these limitations. These modifications will depend on the nature

of the problems being solved.
5.6 Numerical Results

In this section we will present several computational i 'sults for the Dynamic Asset-Based
WA problem. We will use the algorithm given in figure 5.5 to solve the problem and
will also provide an urner bound on the optimal value for the problen.. Some sensitivity
analysis results will also be presented.

The following problem will be used as our baseline problem. We will consider the case
of tw.; time <tages. The kill probability of each w: »pou-target pair in each of the stages is
pk(t) = 0.6, There are K" = 10 assets to each of whi-h is aimed ny = 10 targets. The defense
has M = 200 weapons to intercept these 100 targets. The lethality probability 7 of each

target i; unity. The value Wi of cach of the assets is unity. This problem was chosen as

the bascline problem because it illustrates the following. The optimal static strategy of this
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problem is to defend 5 of the 10 assets. However, we will find that in a dynamic scenario
it is better to defend nine of the assets in the first stage. Therefore the number of assets

defended is almost doubled if a dynamic strategy is used rather than a static one.
5.8.1 Discussion of Simulations

As was mentioned in the previous section, our proposed algorithm produces a sub-optimal
solution. In order to compute the expected value for this solution one needs an optimal
algorithm for the static problem since for each possible first-stage outcome one must find
the optimal value for the corresponding static problem. Since this is not available, we will
produce a lower bound on the value of this solution. This will be done by using a lower
bound on the optimal value for each static problem that must be solved. Another difficulty
is the number of possible outcomes that must be examined. For example, suppose that in
the baseline problem each of the assets had a different value and that in the first stage a
single weapon is assigned to each target. If this is the case then for cach asset either 10
of the targets aimed for it may survive or 9, ..., or 0. Therefore since there are 10 assets
the total number of possible outcomes of stage 1 is 1119 For each of these outcomes one
must calculate the corresponding optimal static value. Such a task is overwhelming. This
difficulty is overcome by using Monte Carlo Simulations.

We simulate the first stage of the engagement as follows., Let X denote the first stage
assignment. Because of the uniformity of the problem, the optimal target assignments can
be obtained by spreading the weapons assigned to an asset evenly among the targets aimed
for that asset. Let us denote the first stage target assignments by 7. The engagements of
the weapons on target i is simulated by flipping a coin. The success probability of the coin
is (1 — pi)™. If the coin toss is a success then we assume that target i survives the first
stage, while if the coin toss is a failure then we assume that target 7 is destroyed in stage 1.
This 15 repeated for all targets te obtain the target state for the second stage. The expected
value of this outcome is then computed (actually only bounds on the expected value can

be computed because we do not have an optimal algorithm for the static problem). Several
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Figure 5.6: Mean of the values for the Monte Carlo simulations vs. the number of sim-
ulations performed for the baseline problem; all weapons are used in the first stage. The
dashed line is the exact expected value for the problem.
of these Monte Carlo Simulations are performed (we have used 100 runs) and the sample
mean is then taken as an approximation to the expected value of the assignment X. We
have founrd that after about 100 simulations the first two digits of the saniple mean remain
constant.

Consider, for example, the baseline problem. If few weapouns are nsed in stage 1 then the
number of possible outcomnes is small and one would expect that after a few simulations the
expected value would be obtained. Therefore as the number of weapons in the first stage

increases (and the number in stage 2 decreases) the number of simulations necessary will .

increase. Let us consider the case in which all of the weapons are used in stage 1. This case
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should req-.ire the most number of simulations. Furthermore we can compute the expected
value for this case exactly since it is simply a simulation of a static problem for which the
expected value can be computed. In figure 5.6 we have plotted the sample mean of the
values of the simulations versus the number of simulations, Note that in this case we do
not need to use a lower bound for the optimal value in stage 2 since we can compute the
optimal stage 2 value exactly. On the plot we have also included the exact expected value

for the problem which is given as follows:
Jy =5(1 - (.4)")'0 = 3.86

Note that only five of the assets are defended; each are defended with 40 weapons. Note
that after 100 simulations the first two digits of the sample mean is correct and remains
correct.

The value for any given first stage assignment is a random variable. An important
quantity is the variance of this random variable. This will indicate how close the value of
any single outcome is likely to be to the expected value. In figure 5.7 we have plotted the
sample standard deviation (the root of the variance) versus the number of simulations for
the baseline problem in which all weapons are used in stage 1. Again since this is a static

problem the exact value of the standard deviation can be computed as:
o = [5(1 = (4))'0(" - (1 - (.4))'0))7 = 0.94.

Note that after about 50 simulations the sample standard deviation is close to the exact
value. Note that for this problem the expected valae is 3.86 and the standard deviation is
0.94. The standard deviation is therefore roughly 20% of ihe optimal value.
that any two outcomes can have significantly different values.

Let us now consider the baseline problem but use 100 weapous in each of the stages. In
this case we cannot compute the experted value and the standard deviation exactly because
of two reasons, (a) we do not have an optimal algorithm to compute the optimal value for

the stage 2 problem and (b) the number of possible outcomes of stage 1 is too large.

Because of these problems we will compute bounds on the expected value by simulating
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Figure 5.7: Standard Deviation of values for the Monte Carlo simulations vs. the number
of simulations for the baseline problem; all weapons are used in the first stage. The dashed
line is the exact standard deviation for the problem.
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Figure 5.37: various valves for the dynamic and static strategies for the baseline problem

stage i and finding bounus for the expected value in stage 2. The standard deviation will
be »- 3 - imzred by simulating stage 1 and then taking the samy'e deviation of the result.
The bourds for the stage 2 optimal velves are found by the use of the algorithm that was
sresented iu chapter for the stutic strategy,

in figure 5.8 we lave lutted the sample means of the upper and lower bounds. Note
that each houn converge: to sume quantity and the difference of these quantities is small.
in figure 5.9 we have plotted (ne sample standard deviation obtained by simulating stage 1.

Severa values id bounds Lave been mentioned. In [igure 5.10 we have shown where

each of these guantities livs relative to the others. These quantities are for the baseline

probleuu using 90 v »apons in stoge one whick is the best ~ i, »n obtained by our algorithm.
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The upper bound on the optimal value for the dynamic strategy is 7.46. The lower bound
on the value of the suboptimal solution of our algorithm is 7.12. Note that this provides us
with a lower bound on the optimal value. For illustrative purposes let us assume that the
optimal value of the dynamic strategy is 7.2. We will assume that the standard deviation
for the optimal solution is the same as the standard deviation of the sub-optimal sclution
which we will take to be the sample deviation obtained after 200 simulations (see figure
5.9). We have also incinded the optimal static value which is 3.86. In general the optimal
value for the static problem may not be computable but upper and lower bounds can be

obtained. The standard deviation for the static value is also shown.
5.6.2 Discussion of Upper Bound Computation

If we fix the aumber of weapons to be used in stage 1 then one can obtain an upper bound
on the optimal value (for that number of first stage weapons) of the problem by solving the
dynamic problem with the upper bound approximation J. In order to obtain the vlobal
solution of the problem one must search over all possible vaiues of m,, the number of
weapons used in stage 1. In figure 5.11 we have plotted the lower bound cn the value of the
solntion produced by the algorithm (solid line) as well 2s an upper bound on tae optimal
value (dashed line) versus the number of weapons used in stage 1. In ord.. ‘o obtain a lower
bound on the optimal value of the problem we must choose the maximurn over all vajues
of m; of the solid line. To obtain an upper bound on the optimal value we must choose
the maximum over all values of m; of the dashed line. Unfortunateiy we find that each of
these fi s peaks at different points. It is, however, very unlikely that the optimal value
of m is ubtained at the peak of the upper bound because at that point the lower hound
is extremely small. We will therefure assume that the optimal value of my is the point at
which the lower bound on the expected value of the solution of the algorithmn peaks. This is a

very reasonable assumption since we believe that the shape of this function :presents very

closely the shape of the optimal one.
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- Figure 5.11: Upper and lower buunds on ihe optimal vaiue vs. the number of weapons used
in stage 1 for the baseline problem.
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5.6.3 Sensitivity Analysis

Ore important feature that we have discovered about a "ynamic strategy is that it is less
sensitive to the number of assets defended compared to the static strategy. This can be
illustrated as follows. In figure 5.12 we have plotted tii . lower bound on the expected value
of the dynamic strategy versus the number of assets {uniformly) defended. We have also
plotted the case for a static strategy. Note that for the dynamic strategy it makes little
difference whether 8, 9 or 10 of the assets are defended in stage 1. On the other band, the
performance of the static strategy degrades significantly if the optimal number of assets are
not defended. This difference will be of inore importance in the general problem where onz
must decide on which subset of assets should be defended.

We will next present a simple but approximate expression for the optimal value of the
two-stage dynamic strategy. We will assume that ng = n, Wy = W,m, = 7 and p(t) = p.
We have found empirically that a good approximation to the optimal value of m; under
these assumptions is M /2. Let us suppose that it is optimal to defend L of the assets in
stage 1. The optimal strategy is to spread the weapons a. evenly as possible among the L
assets. If this is done the expected numnber of targets aimed for an asset that survive stage
1 is given approximately by

nxn(l- p)ﬁ‘i.

Again we have found empirically that the assets defended in stage 2 are the same that were
defended in stage 1. Also the weapons will again be spread as evenly as possible among the
defended assets. If we assume that the expected number of targets survive stage 1 and that
in stage Z only the assets that were defended in stage 1 are defended then the cost can be
approximated by

Ji(L)~ L[l - (1 - p)ia]?. (5.7)

We could not find a simple expression for the number of assets to be defended in stage
1. However, the expression 5.7 can easily be evaluated for different values ¢t L and the

maximum value taken. Consider for example the baseline problem. If 8 assets are defended
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Figure 5.12: Optimal dynamic and static values as a function of the number of assets
defended for the baseline prcblem
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in stage 1 we get fi = 3.18 and s0
J3(8) = 8[1 - (.4)39)3? = 7.3.

Similarly we can compute

JH9) & 7.2,

and

J3(7) = 6.8.

Therefore it is better to defend eight of the assets than to defend seven or nine. The lower
bound on the optimal value for this problem is 7.1 while the upper bound is 7.5. We
therefore find that the approximation 7.3 is a good one. Using our henristic we find that 9
of the 10 assets should be defended in stage one. The approximation says that 8 of the 10
assets should be defended in stage one.

Let us now consider the case of the baseline problem but with 100 defense weapons. If
we use the above approximation we find that it is best to defend 4 of the assets in stage 1

and that the resulting value is given by
Ji(4) =~ 3.7.

The upper and lower bounds on the optimal value for this case is 3.93 and 3.47. So we

again fird that the solution obtained using the approxiamtion is very good.

These approximations can be used to get a rough estimnate of the number of weapons to
use in stage 1, the number of assets to defend in stage 1 and also the expected value of the

assignment.
5.6.4 WNumerical Examples

We will next consider what happens to the optimal solution and value as each of the
parameters in the baseline problem is varied. Because of the uniformity of the problem,
all but one of the assets will be defended by the same number of weapons. Therefore we

will represent the solution of the dynamic problem (i.e. the stage 1 assignment) hy the

ittt
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Kill probability 0.5/06]07]08]05] 10|
No. Stage 1 weapons | 150 | 90 | 100 | 100 | 100 | 100
Dynamic Solution 751 9 |10 [ 101 10| 10

Dynamic Upper Bound | 6.9 | 7.5 95| 10 | 10 | 10
Dynamic Lower Bound | 5.1 | 7.1 {93 10 | 10 | 10

Static Solution 4 516710} 10| 10
Static Uppur Bound 29139(51{66 90| 10
Static Lower Bound 29139149 (6A] 9.0 10

Ratio Upper Bound 24 {19119 15(11]1.0
Ratio Lower Bound 18118118 |15 11] 1.0

Table 5.1: Dynamic and Static Values for the Baseline problem with 200 weapons and
various kill probabilities

Kill probability 0510607080910
No. Stage 1 weapons 100 | 80 | 90 | 100 | 100 | 100
Dynamic Soluticn 5 8 9 16 | 10 | 10
Dynamic Upper Bound | 5.6 [ 6.1 | 7.8 9.6 | 10 | 10
Dynamic Lower Bound | 4.1 {52 (73795 | 10 | 10
Static Solution 3 |37 5 (15|75 10
Static Upper Bound 22 129(138]| 5068 10
Static Lower Bound 221283848 |67} 10

Ratio Upper Bound 26 121[20]201.5] 1.0
Ratic Lower Bound 1.9 {1.871.9(19 |15 10

Table 5.2: Dyramic and Static Values for the Baseline problem with 150 weapons and
various kill probabilities

Kill probability 0.5[06(07]08;09]1.0
No. Stage | weapons 50 | 50 | 60 | 70 | 90 | 100
Dynamic Sclution 251} 5 § 7 9 |10
Dynamic Upper Bound | 3.2 1 3.9 /5.2 65|85 10
Dynamic Lower Bound | 2.6 | 3.5 | 4.8 /.91 10
Static Solution 2 125133} 5 5 10
Static Upper Bound 1511912513345 10
Static Lower Bound 151712313345 10

Ratio Upper Bound 2112312312019} 10
Ratio Lower Bound 171181191918 1.0

Table 5.3: Dynamic and Static Values for the Baseline problem with 100 weapons and
various kill probabilities
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number of assets defended in stage 1. All but one of the assets will be defi nded with the

same number of weapons. The other defended asset will be defended with  ‘sser number

" of weapons so it will not be as heavily defended as the others. We will inclu . this asset as

a fraction in the number of assets defended. This fraction will be the ratio of the number
of weapons assigned to defend the asset and the number of weapons assigned to each of
the other (more heavily defended) assets. We also computed upper and lower bounds on
the ratio of the optimal dynamic and static values. These bounds were ohtained using the
upper and lower bounds on the optimal Dynamic and Static values. In 5.1 we have included
dynamic and static results for the baseline problem, Table 5.2 contains the dynamic and
static results for the baseline problem with {50 weapons while table 5.3 contains results for
the baseline problem with 100 weapons. We will next provide some examples and discuss
the implications of each of the results.

In figure 5.13 we have plotted the upper and lower bounds on the optimal values for
both the dynamic and static strategies for the baseline problem with 200 weapons {s;lid
lines). We have also plotted the approximation obtained using equation 5.7 (dashed line).
Note that the approximation is a good one. In figure 5.14 we have plotted the bounds for
the baseline problem with 100 weapons. Note that the plots for the static and dyramic
strategies have roughly the same shape (convex for small values of p and convave for larger
values). The only differ:nce i, that the curve for the static strategy is lower. Therefore let
us consider the fellowing. If we keep the number of weapons for the dynamic problem fixed
and increase the number of weapons for the static problem, then the curve for the static
problem will approach that for the dynaniic problemn. Some simple calculations show that
this will occur when the number of weapons for the static problem is roughly twice that
for the dynamic preblem. We, therefore, find once more that the dynamic strategy requires
about half as many weapons as the static strategy for the same love! of performance. Recall
that this result was also true for the Dynamic Target-Based problem. Also note that the
optimal values for both problems are sensitive to the kill probahility.

In figure 5.15 we have plotted the upper and lower bouunds on the ratio of the optimal

PYTRurEon
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Figure 5.13: Upper and lower hounds on the optimal values for the dynamic and static
problemns versus the kill probability for the baseline problem with 200 weapons. The dashed
line is the approximation to the optirizl dynamic value obtained using equation 5.7.
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Bounds on Optimal Value
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- Figure 5.14: Upper aud lower bounds on ihe optimal values for the dynamic and static
Y problems versus the kill probability for the baseline problem with 100 weapons. The dashed
line is the approximation to the optimal dynamic value obtained using equation 5.7.
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and static problems versus the kill probability for the baselire problem with 100 weapons.
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dynamic and static values versus the kill probability for the baseline problem with 200
weapons. We have also included the value obtained by the approximation presented in
the previous subsection (the dashed line). In figure 5.16 these bounds were plotted for the
baseline problem with 100 weapons, Note that the ratio goes to unity as the kill probability
goes to one. This happens because, in the limit of unit kill probabilities, all assets will
be saved if either strategy is used. For kill probabilities less than 0.9 the ratio of the
optimal dynamic and static strategies is roughly two. In other words, a dynamic strategy
outperforms a static one by roughly a factor of two. Note that, for static problems, the
optimal value increases linearly with the number of weapons. Therefore, twice as many
weapens will be required for the static problem to obtain the same performance as the
dynamic problem. This is the same conclusion that was drawn in the previous paragraph.

The only difference between the curve for the case of 200 weapons and that for the
case of 100 weapons is that the former curve starts decreasing around p = .8 while the
latter curve starts decreasing around p = .33. Since there are 100 weapons, there will be
double shooting if 200 weapons are used. Note that the effect of double shooting with a
kill probability of p is the same as single shooting with a kill probability of 1 — (1 — p)?).
We will therefore consider the case of 200 weapons as being equivalent to the case of 100
weapons with a kill probability of p(2 — p). The following can therefore be used as a rule of
thumb. If the number of “perfect” weapons (M(1 - (1 - p)%) is less than 95 and greater
than 50 tiien the ratio of the optimal values of the dynamic and static problems is roughly
two. This means that, for these types of problems, the dynamic strategy outperforms the
static one by a factor of two.

In the following tavles we will investigate the affect of changing various parameters of the
baseline problem. We will provide the results for both the dynamic and static problems for

comparisons. Note that, for the baseline problem there are 10 unit vaiuned assets. Therefore

the expected surviving value of the assets cannot be greater than 10.
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Table 1: Baseline Problem

The baseline problem: M =200, N = 106, T =2, K = 10,nx = 10,px = 0.6,mx = 1, Wy =1
fork=1,...,KX.
STATIC CASE:
Optimal solution®: [0,0,0,0,0,40,40,40,40,40)
Optimal value: 3.86
Standard Deviation: 0.94
DYNAMIC CASE:
Number of weapons used in first stage: 90
Assignment of these weapons® : [0,10,10,10,10,10,10,10,10,10]
Lower bound on value of this solution: 7.12
Upper bound on optimal value: 7.46
REMARKS:
Note that for the static case the optimal strategy is to defend half of the assets uniformly
(preferential defense). For the dynamic case 9 of the assets are defended in the first stage.
Note also that the valne of the solution produced by the sub-optimal algorithm is close to
the upper bound on the optimal value. This implies that the sub-optimal solution is either
equal or close to the optimal sclution.

Note that a typical stage 2 state might be [0,4,4,4,4.4,4,4,4,4]. For this state the optiinal
stage 2 solution would be (2,12,12,12,12,12,12,12,12,12]. Therefore we see that the same
number of assets that were defended in stage 1 are defended in stage 2. This makes sense

* .
since weapons would be wasted if m

Finally note that the optimal dynamic value is roughly twice that of the optimal static
value. This means that the defense can save roughly twice as many assets by using a dynamic

strategy. Since roughly seven assets are eventually savea with the dynamic strategy then

*Represented by the number of weapons assigned to defend each of the 10 assets. The number of weapons
assigned to each of the targets diiected to an asset can be obtained by dividing by 10 the number of weapons
assigned to the defense of that asset.

*Represented by Lhe numbe: of weapons assigned to defend each of the 10 assets in the first stage.
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why does the defense attempt to save 9 assets in the first stage? Let us consider such a
strategy. Consider the assignment in which 160 weapons are used ir stage 1. These weapons
are used to defend 8 assets with 20 weapons each. The expected value for this solution is
7.09. Therefore we find that if the defense did try to save 8 assets in the first stage then
the resulting solution is near-optimal. This suggests that any reasonable strategy will be

near-optimal.

Table 2: Baseline Problem with lower kill probability

The baseline probl m except that the kill probability for each weapon-target pair in each
stage is 0.5:

STATIC CASE:

Optimal solution: [0,0,0,0,9,0,50,50,50,50]

Optimal value: 2.91

DYNAMIC CASE:

Number of weapons used in first stage: 150

Assignment of these weapons: {0,0,10,20,20,20,20,20,20,20]

Lower bound on value of this solution: 5.10

Upper bound on optimal value: 5.90

REMARKS:

In this case we note that even for the dynamic problem it is better to use a preferential
defense in stage 1. However, 7.5 assets are defended in the dynamic case compared to 4
in the static case. Note that the algorithm is able to handle such cases for the dynamic

problem.

Table 3: Baseline Problem with higher kill probability

The baseline problem except that the kill probability for each weapon-target pair in each
stage is 0.7:
STATIC CASF:
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Sub-optimal solution: [0,0,0,20,30,30,30,30,30,30]

Value of suboptimal solution: 4.95

Upper bound on optimal value: 5.07

DYNAMIC CASE:

Number of weapons used in first stage: 100

Assignment of these weapons: [10,10,10,10,10,10,10,10,10,10]

Lower bound on value of this solution: 9.35

Upper bound on optimal value: 9.47

REMARKS:

As the kill probability of the wezpons increases we find that for the dynamic case all of the
assets are defended. Note also that either the solution produced by the algorithm is getting
closer to optimal or the upper bound on the optimal value is improving (or both) as the

kill probability increases.

Table 4: Baseline Problem with increasing (with stage) kiil probabilities

The baseline problem except that the kill probability of the weapcns in the first stage is 0.5
while their kill probability in the second stage is 0.7:
STATIC CASE: {all weap: 15 fired in stage 2)

Sub-optimal solution: {0,0,0,20,30,30,30,30,30,30]

Value of suboptimal solution: 4.95

Upper bound on optimal value: 5.07

DYNAMIC CASE:

Number of weapons used in first stage: 90

Assignment of these weapons: [0,10,10,10,10.10,10,]O,IO.IO]
Lower bound on value of this solution: 6.89

Upper bound on optimal value: 7.22

REMARKS:

Our intuition for this case is that more weapons should Se used in the stage with higher
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kill probability (stage 2) than in the other stage. The solution produced by the algorithm
does in fact have this property. However, note that although the difference in the kill
probabilities is large (0.5 and 0.7) only 20 more weapons atre used in stage 2 than in stage

1.

Table 5: Baseline Problem with decreasing (with stage) kill probabilities

The baseline problem except that the kill probability of the weapons in the first stage is
0.7 while their kill probability in the second stage is 0.5. Note that this is the reverse of
problem 4:

STATIC CASE: {all weapons fired in stage 1)

Sub-optimal solution: [0,0,0,26,30,30,30,30,30,30)

Value of suboptimal solution: 4.95

Upper bound on optimal value: 5.07

DYNAMIC CASE:

Number of weapons used in first stage: 120

Assignment of these weapons: {10,10,10,10,10,10,10,10,20,20]

Lower bound on value of this solution: 7.67

Upper bound on optimal value: 8.52

REMARKS:

Again note that we obtain the intuitive result that more weapons should be used in the
stage with higher kill probability. However, if 100 weapons are used in stage 1 the lower
bound on the value of the resulting solution is 7.62. Therefore the value does not seem to
be very sensitive to the number of weapons used in stage 1. Finally note that the opiimal
value for this case is approximately 8.1 while that for the previous problem is approximately
7.1. Therefore we find that it is better to use the more effective weapons in stage 1 rather

than in stage 2. A similar result was also obtained for the Dynamic Target-Based problem.
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Table 8: Baseline Problem with less weapons

The baseline problem except that the defense has 100 weapons:
| STATIC CASE:

Sub-optimal solution: [0,0,0,0,0.0,0,20,40,40]

Value of suboptimal solution: 1.72

Upper bound on optimal value: 1.93

. DYNAMIC CASE:

| Number of weapons used in first stage: 50

K Assignment of these weapons: [0,0,0,0,0,10,10,10,10,10]

I. Lower bound on value of this solution: 3.47

4| Upper bound on optimal value: 3.93

: REMARKS:

: Here we find that the dynamic strategy performs better than the static one even if the
number of weapons equals the number of targets. Again we find that the weapons should he
divided equally between the stages. Also note that the performance of the dynamic strategy

. is approximately twice that of the static one as we have found for most of the problems.

Also recall that for the Dynami Target-Based problem if the number of weapons was less

than or equal to the number of targets then a dynamic strategy could not perform any

better than a static one. This is a major difference between the two problems.

Table 7: Baseline Problem with more weapon:.

Tha baseline problem excepi ihai the defeinse has 300 weapons:
STATIC CASE:

Sub-optimal solution: [0,0,20,40,40,40,40,40,40,40]

Value of suboptimal solution: 5.58

Upper bound on optimal value: 5.79

DYNAMIC CASE:

Number of weapons used in first stage: 200
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Assignment of these weapons: {20,20,20,20,20,20,20,20,20,20]

Lower bound on value of this solution: 9.88

Upper bound on optimal value: 10.00

REMARKS:

The bound on the optimal value for the dynamic value obtained using our algo:zithm was
actually 10.29. However since there are only 10 assets, each of unit value, the maximum
possible value is 10. We therefore find that the algorithm could produce a useless bound a
in this case. However we have found that for the cases in which this occurs a good upper
bound is the total sum of the asset values. Also note that in this case 200 weapons are
used in the first stage. If 150 weapons are used in the first stage the lower bound on the
resulting solution is 9.73. Therefore if half of the weapons are used in the first stage as was

the case in most of the other problems the resulting value is still near-optimal.

Table 8: Baseline Problem with less targets per asset

The baseline problemn except that there are 20 assets each of unit value with 5 targets aimed
at each asset:

STATIC CASE:

Sub-optimal solution: [0,0,0,0,0,0,5,15,15,...,15]
Value of suboptimal solution: 9.42

Upper bound on optimal value: 9.58
DYNAMIC CASE:

Number of weapons used in first stage: 100
Assignment of these weapons: {5,5,...,5,5)
Lower bound on value of this solution: 16.35
Upper bound on aptimal value: 16.61
REMARKS:

In this case 82% of the asset value is saved while for the baseline problem 70% was saved

This indicates that smaller attacks on each asset favors the defense. This was also true for
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the static problem. In other words if the number of assets is kept fixed then as the number
of targets increases, the performance of the defense decreases even if the weapon to target ¢
ratio was kept fixed. Therefore if the defense wishes to maintain the same performance it

must increase its arsenal at a greater rate than that of the offense.

Table 9: Baseline Problem with more assets

The baseline problem except that there are 15 assets of unit value and the defense has 300
weapons:

STATIC CASE:

Sub-optimal solution: {0,9,0,0,0,0,0,20,40,40,40,40,40,40,40]

Value of suboptimal solution: 5.58

Upper bound on optimal value: 5.79

DYNAMIC CASE: )
Number of weapons used in first stage: 170

Assignment of these weapons: [10,10,10,10,10,10,10,10,10,10,10,10,10,20,20]

Lower bound or value of this selution: 10.57

Upper bound on optimal value: 11.90

REMARKS:

In this case wa have increased the number of assets while keeping the weapon to target ratio

fixed. We find that the percentage of asset value saved in this case (70%) is approximately

the same as that for the baseline problem (71%). We also find that the fraction of weapons

used in the first stage is closer to half than for the baseline problem with 300 weapons. It

therefore appears that as the size of the problem increases this fra-tion tends towards one

haif. Finally note that if 150 weapons are used in the first stage the lower bound on the

value of the solution is 10.54. This again shows that using half of the weapons in the first

stage results in a near-optimal solution.
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Table 10: Baseline Problem with higher kill probability but less weapons

The baseline problem: except that the kill probability of each weapon-target pair in each
of the stages is 0.8 and the defense has 100 weapons:

STATIC CASE:

Optimal solution: [0,0,0,0,0,20,20,20,20,20)

Optimal value: 3.32

DYNAMIC CASE:

Number of weaporns used in first stage: 70

Assignment of these weapons: [0,0,0,10,16¢,10,10,10,10,10]

Lower bound on value of this solution: 6.25

Upper bound on optimal value: §.53

REMARKS:

For this problem we have decreased the number of weapons but increased their kill proba-
bility. Note that although there are few weapons the dynamic strategy can still make more
effective use of them than the static one. Also note that we can consider the defense as
having 80 perfect weapons (Mp). If we look at the baseline problem with a kill probability
of 0.5 then the defense can be considered as having 100 weapons. However the optimal value
for the former problem is about 6.4 while that of the latter is about 5.7. This indicates
that looking at the problem in these terms (i.e. perfect weapons) can be ory misleading.
However, since 200 weapons are used for the baseline problem and there & 100 targets let
us consider the equivalent kill probability if a target is double shot. Since p = .5 then the

121 121080,
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Using this approach we find that the baseline problem with a kill probability of 0.5 should
perform worse and indeed it does.
Teble 11: Baseline problem with different asset values

The baseline problem except that the asset values are given by W = [1,1,1,1,1.3,3,3,3,3].

Note that the maximum possible expected value is 20.
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STATIC CASE:

Optimal solution: [0,0,0,0,0,40,40,40,40,40] “
Optimal value: 11.57

DYNAMIC CASE:

Number of weapors used in first stage: 110

Assignment of these weapons: {0,0,0,0,10,20,26,20,20,20)

Lower bound on value of this solution: 16.19

Upper bound on optimal value: 17.94

REMARKS:

Note that the optimal solution of the static problem is the same as for the baseline problem.
Since all of the larger valued assets are defended, the optimal value is three times that for
the baseline problem. On the other hand the optimal solution for the dynamic case is to
defend all of the larger valued assets with 20 weapons each and to defend one of the unit
valued assets with 10 weapons. Recall that in the baseline problem 9 of the assets were
defended in the first stage. Note that in this case 81% of the tot:l asset value is saved
compared to 71% for the baseline problem. This is expected because, since this problem is
non-uniform, the lower valued assets can be left undefended when a preferential defense is

used,

Table 12: Baseline problem with different kill probabilities

The baseline problem except that the kill probabilities in each stage is given by p(t) =
(.5,.5,.5,.5,.5,.68, .68, .68, .68, .68).

STATIC CASE:

Optimal solution: [0,0,0,0,0,40,40,40,4G,40] .

Optimal value: 1.50

DYNAMIC CASE:

Number of weapons used in first stage: 90

Assignment of these weapons: [0,10,10,10,10,10,10,10,10,10]
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Lower bound on value of this solution: 6.94

Upper bound on optima! value: 7.23

REMARKS:

Note that the kill probabilities were chosen so (1 —.5)(1 —.68) = (1 — .6)%. In other words
double shooting in the baseline problem is equivalent in lethality to double shooting in this
problemn with one low kill probability weapon and one high kill probability weapon. Note
that the performance of the static case is better than the performance of the siatic case for
the baseline problem. On the other hand the performance for the dynamic case is ronghly
the same as that for the baseline problem. Therefore the effect of differing kill probabilities

is smaller in the dynamic problem.

Table 13: Baseline problem with different targets per asset

The baseline problem except that the number of targets aimed at each asset is given by
i = [5,5,5,5,5,15,15,15,15,15].

STATIC CASE:

Optimal solution: {5,5,5,5,5,0,0,0,0,75)

Optimal value: 5.61

DYNAMIC CASE:

Number of weapons used in first stage: 100

Assignment of these weapons: [5,5,5,5,5,0,0,15,30,30]

Lower bound on value of this solution: 7.63

Upper bound on optimal value: 7.81

REMARKS:

The performance for the dynamic case is better than that for the baseline problem. Again
this is due to the fact that the number of targets per asset is not the same for all assets but
the average number of targeus per asset is the same as for the bascline problem. Therefore
when a preferential defense is required the assets with many targets aimed for them will be

left undefended while the others would be defended.
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5.7 Concluding Remarks

In this chapter we liave presented the Dynamic Asset-Based problem together with a sub-
, optimal algorithm for finding a good solution. We have also presented a method for ob-
. taining an upper bound on the optimal value. In our numerical results we have presented
i examples which illust.ate various properties of the solution of the dynamic problem. We
also performed comparisons of the dynamic and static strategies. The main conclusions can

5 be summarized as follows:

| o This is the most general of the problems considered and hence the most difficult. It

| is also NP-Complete.

¢ Because of the difficulty of the problem it is necessary to use approximations. Fur-
thermore, the value of an assignment cannot, in practice, be evaluated exactly because

of the number of operations required. Therefore this value must be estimated with

the use of simulations.

i

|
ﬂ’ ¢ The sub-optimal algorithin presented performed well on the problems on which it was
run. We believe that if this method is used on the more general version of the problem

it will also perform well.

® The Target-Based approximation approach to solving the problem is advantageous be-

cause it can make use of algorithms that have alrea ]y been developed for the Dynamic

Target-Based problem. However in its pure form (i.e. without any modifications), this

| approach may perform poorly on problems for which a strong preferential defense is

! optimal.

B e In general we have found that the performance «f a 4ynamic strategy is roughly twice
that for the corresponding static strategy. An equivalent statement is that half as
many weapons are required for the dynamic problem to obtain the same level of
performance as the static one. These results show the importance of using a dynamic

| approach. The increase in the computational complexity can be reduced by using
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approximations. We have found that simple approximations reduce the computational

complexity while only slightly degrading the performance.

There are several directions in which one may pursue the research of this chapter. One
can investigate the effect of kill probabilities which are dependent on both the weapon as well
as the target. There is also the problem of evaluation of an assignment. We used simulations
to do this but there may be other approaches. Since the assets and the weapons will be

geographically distributed one should also study distributed algorithms for the problem.




Chapter 6

Summary and Conclusions

6.1 Summary

In this thesis we have considered a class of dynamic, nonlinear weapon-target allocation
problems. In particular we have studied the Static Target-Based, the Dynamic Target-
Based, the Static Asset-Based and the Dynamic Asset-Based Weapon-Target Allocation
Problems. The main application of these problemns is in military defense models. Our
intent was to provide an intuitive understanding of the problems and their solutions.

The Static Target-Based WTA Problem was presented in chapter 2. In general this
problem is NP-Complete. However, in the case of a single class of weapons, the optimal
solution can be found efficiently. Lower bounds on the optimal solution of the general
problem can be found by relaxing the iutegrality constraints of the decision variables and
solving the dual of this problem. This bound is very helpful in judging heuristics for solving
the more general version (i.e. with many weapon classes) of the problem since it can be
used to estimate how close the heuristic solution is to the optimal one.

‘The Dynamic ‘l'arget-Based WA problem was presented in chapter 3. We have found
that this is a significantly more difficult problem than the static version. Under the as-
sumption of a single class of weapons, two decisions must be made, the optimal number of
weapons to be used in each stage and the cptimal assignment of these weapons to targets.
The former problem is difficult because many local optima may exist so that basically a

global search has to be done. The latter assignment problem is also difficult because of
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the analytical and computational complexity. However, for the case of two targets we have
shown thai the Maximum Marginal Return algorithm produces thke optimal solution. We
have aluo looked at other special cases of this problem for which optimal solutions were ob-
tainable. The costs of these solutions were then ccmpared with the costs of the solutions of
the static problem. It was found that the defense can essentially double its arsenal by using
a dyvnamic strategy rather than a static one. Several analytical results were also obtained
for simple cases of the problem. These results have provided us with valuable insight into
the problem.

In chapter 4 we presented the Static Asset-Based WTA problem. This problem is more
difficult than the static Target-Based problem primarily because the objective function is
norn-concave. Uinder the assumption of a single class of weapons, we proposed a sub-optimal
algorithm for the problem. This algorithm also produces an upper bound on the optimal
value and in many cases it produces the optimal solution for the problem. Experimental
results have shown that, for most practical purposes, the solution produced by the algorithm
is optimal. We also presented several sensitivity analysis results.

The dyramic version of the Asset-Based WTA problem was presented in chapter 5. This
is the most general of all the problems considered and herce the most difficult. We presented
a sub-optimal algorithm for solving this problem under some simplifying assumptions. A
method for finding an upper bound on the optimal value was also given. Examples were
then presented to illustrate various properties of the solution of the problem. It was found
that the solution obtained by the sub-optimal algorithm was n ar-optimal for many of the
examples considered. Comparisons of the optimal value of the dynamic problem were made
with those of the static oroblem. Th2se comparisons suggest that the performance of a
dynamic strategy is roughly twice that of the static one.

Our work has provided us with valuable insights into the class of problems that was
studird. From our results we were able to make conclusions which will help direct the
future of research into these problems. These will next be given.

“everal heuristics are available for the solution of the Static Target-Based problem. We
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believe that heuristics based oa the Maximum Marginal Return algorithm are both efficient

and provide good solutions to the problemn. We have proposed an optimal local search

" algorithm for the problem under the assumption of weapon independent kill probabilities.

This algorithm also has the nice property that it can be implemented on a parallel computer.
This is an important property for the military defense applications since the problem has’
to be solved in real time.

We believe that a Maximum Marginal Return algorithm will also work well for the
Dynamic Targe:-Based problem. We have shown that such an algorithm is optimal in the
case of weapon independent kill prbabilities with two targets. For some simple cases we
have the following interesting result. If the number of stages is large then the same optimal
cost as that for the static problem can be obtained by using half the number of weapons
for the corresponding dynamic version of the problem. In other words, the defense can
essentially double its arsenal by going to a dynamic strategy. Note that, in terms of cost
performance this corresponds to a much greater increase in performance than a factor of
two. These results indicate that their is a great advantage in using a dynamic strategy
rather than a static one. The greater computational complexity of the dynamic strategy
compared to the static one can be greatly reduced by using simple approximations.

We have prop. ed a sub-optimal algorithm for the Static Asset-Based WTA problem
which is, for most practical purposes, optimal. .‘his result is supported by numerical evi-
dence. We believe tha’ *his algorithm can be used as a basis for a heuristic for the more
general version of the problem. For the case of military defense problems we believe that
the Asset-Based version should be given more attention since it more accurately models the
later stages of an attack. It also captures the idea of a preferential defense which makes
intuitive sense.

The Dynamic Asset-Based WTA problem has been the most general problem we have
considered. Nu-erical experimentation has shown that our sub-optimal algorithm performs
well. This alg rithin can be used as a basis for the more general version of the problem.

Numerical results show that the dynamic str. tegy performs significantly better than a static
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on~. For the problems we have considered the dynamic strategy had a cost performance
which was roughly twice that of the static one. The large computational complexity of the
dynamic problem can be significantly reduced by the use of simple proximations. Such
approximations were used in our algorithm. We believe that such approximations only
slightly reduce the cost performance for the dynamic strategy. Since the cost periormance
can be doubled with only a small increase in the computational complexity of the problem

we conclude that research should be concentrated on dynamic versions of the problem.

6.2 Directions for Further Research

There are several directions in which further research can be done. We will mention some
of these in this section.

The Target-Based WTA problem is a good model for the probiem of military defense
for the early stages of the attack during which the defense does not know the intent of
the enemy. On the other hand, the Asset-Based problem is more applicable for the later
stages of the attack when the defense knows the detailed objectives of the offensive weapons.
An interesting question is how these two models can be combined into a dynamic model
in which the early stages are Target-Based while the later stages are Asset-Based. One
must also decide how many stages etc. should be considered. Furthermor., in a realistic
scenario the attack will not be simultaneous as we have assumed. How then can a sequential
attack be apprrariately included? And how should the stage variables be defined? These

questions suggest that there are many interesting problems in deciding on an appropriate

Another issue that must be considered is that of coordination of the defen.e’s weapons.
These weapons will be geographically distributed and will be controlled by different com-
puters. Questions that should be considered are: How often should these computers ex-
change information, what information should they exchange, how much information should
be exchanged, what typ. of network architecture should be used for communication, which

senscr information shonld be sent to which computer etc.? There are several questions to be
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asked and answered. The answers to these questions will depend on the weapons allocation
algorithm being used.

As we have seen from our simple examples the computational complexity of the Weapon-
Target Allocation problem is enormous. Even the static version of the Target-Based problem
is NP-Complete, Furthermore these assignments must be done in real time since the dura-
tion of the attack may be short. In order to obtain near-optimal solutions as fast as possible
one would have to resort to parallel computers. In this case weapon-target allocation al-
gorithms which are easily parallelizable will have to be chosen. Such algorithms should
therefore be studied.

Another area of research which should be considered is the simulation of these algo-
rithms. In a realistic scenario there are several physical constraints on the problem which
should be taken into account. We believe that when this is done the number of feasible
solutions will be reduced significantly. One must therefore ask which of these constraints
»hould be considered to simplify the optimization problem. Several other effects should
also be included into the model such as the effect of a weapon-missile engagement on other
weapons and missiles.

One can see from the above that to properly model a realistic scenario one must include
several additional factors. The aim of this thesis was to look at the basic underlying problem
to gain some insight. We believe that a similar approach should be used to gain insight for
the additional factors mentioned above. These results can then be combined to produce

good heuristics.
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Notation and Definitions

This appendix contains notation and definitions used throughout the thesis.

A.1 Notation

. The following standard notation will be used in the thesis:

[z] 4" The smallest integer greater than or equal to z € R,
JI lz] ' The largest integer smaller than or equal to z ¢ R,
J R 4 The set of natural numbers,
| R 4' The set of real numbers,

Z, ' The set of non-negative integers,

VAN %' The set of ordered n-tuples of non-negative integers,
s B C OV PO

€ 4" The i** column of the iden vity matrix,
o E{z} Al The expected value of the random variable z,

1S| %' The size of the finite set S,

def 1

2l = [Zf l=d? 2,

n def n!

P (A1
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A.2 Definitions

In this section we will present definitions of concepts which are used throughout the thesis.
Some references on this material are [13], {16] and [20].

The .ollowing are some basic definitions from convex analysis.

Definition A.1 Given two points 2,y € R", a convex combination of them is any point
of the form

2= Az + (1- Ay, AER and 0<ALL

If A # 0,1 we say z is a strict convex combination of z and y.

Definition A.2 A set § C R" is convex if it contains all convex combinations of pairs of

points z,y € §.

Definition A.3 Let § C R" be a convez se!. The function f: § — R is convex in S if

for any two puints z,y,€ S
FAAZ + (1= AN)y) < Af(z)+ (1= A)f(v), Ae®R and 0LA< L.

Definition A.4 A function f defined in a convez set S C R" is called concave if —f is

convez in S.

Definition A.5 A function F : R — R to be minimized is said to be unimodal over the

interval [a,b] if there exists a A that minimizes F over the interval and jor Xy, Az € [a,b]

such that (A1) # F(X), F(\;) # F()), and Ay < A; we have

A2 <A implies F(A1) > F()y),

A 2 X implies F(M\) < F(Ag).
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We will next introduce some of the terminology used in optimization theory. The prob-

lems to be considered in this thesis have the following general form:
minimize f{z)

subjectto € S

The function f : R® —— R is called the objective function. The set § C R" is called the

constraint set and the elements of the set § are called feasible solutions.

Definition A.8 The point z° € S is called a local minimum of f over § if for some
e>0

flz™) < f(z) Vr € 5 suchthat |lz-2z°|| <e.
Definition A.7 The point z* € § is calied a global minimum of f over § if
J") < =) VzeS.

We next give some basic definitions from probability theory which will be used in the

thesis,

Definition A.8 Consider a sequence of n independent trials. Each trial has two possible
outcomes, a success and a failure. The probability that the outcome is a success is denoted
by p while that of o failure is denoted by ¢ = 1 — p. The probability that k of these n trials

results in a success will be denoted by b(k; n,p) and is given by:

b(kin,p) = (:) pH(1-p) k.

The expected value of the random variable k is given by np and the variance is given by npq.
The following definitions are from Complexity theory.

Definition A.9 Let f(n), g(n) be functic 1s from the positive integers to the positive reals.

(a) We write f(n) € O(g(n)) if there exists a constant ¢ > 0 such that, for large enough m,

f(n) < cgi{n).
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(b) We write f(n) € Q(g(n)) if there ezists a constant ¢ > 0 such that, for large enough n,
f(n) 2 cg(n).

(a) We write f(n) € O(g(n)) if there exist constants c,c’ > 0 such that, for large enocugh

n, cg(n) < f(n) < c'y(n).
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Appendix B

Proofs of Theorems

In this appendix we will present the MMR, algorithm together with a proof of optimality.

We will also include proofs of theorems.
B.1 The MMR Algorithm

In this section we will introduce the Maximum Marginal Return (MMR) algorithm and
prove its optimality.

Let F : R® — % be defined as:

F(£)=3 flzi) xi€Z4r i=12,...,n

i=1

where each of the functions f;(2) has the property:

filz = 1) = fi(z) 2 filz) - filz + 1).
For any m € Z, consider the following optimization nroblem:

i i B.1
ilfglzli F(Z) (B.1)

sabject to Za:.- =m.
t=1
The following aigorithm, called the Maximum Marginal Return (MMR) algorithm, is opti-
mal for this problem.

procedure MMR
begin

]

= [0,....0]T
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for i := lin do A; := fi(zi) — fi(zi+ 1)

for j ;= lim do

begin
Let k be such that A; = max{A};
T =2+ 1,
Ay = filza) ~ fu(ze + 1)

end

end

This is basically a greedy algorithm. In each iteration the index k is found for which an
increase in z; by unity produces the maximum decrease in the objective function. The value
of zj is increased by one and the process is repeated until the constraint is satisfied. If the
marginal return data is stored in heaps then the initial heap data structure requires O(n)
operations to construct. In each iteration the maximum marginal return item is removed
and the heap must be reorganized. This requires O(logn) operations. Since there are m
iterations, the worst case complexity of the algorithm is O(n + mlogn). We will next prove

the optimality of the algorithm.
Theorem B.1 The solution produced by the MMR algorithm is optimal for problem B.1.

Proof: The proof of this theorem for the special case in which the functions f; have the
form f(z) = V(1 — p)© is given in [4]. We have generalized their proof. The proof of the
theorem will be by induction. Note that the theorem is trivially true for the case m = 1.
Assume that it is true for m = 7. Denote the optimal solution for this case by Z. Now
suppose that:

S(@e) = filZe + 1) = max{fi(2i) - fi(Zi + 1)} (B.2)
n for the case m = 771 + 1 by ©™. Note

that #* = £ + e. Let 7 be any feasible solution to the problem with m = /@ 4 1 other than

Z". There must exist some j such thal 2; > 27 2 Z;. Let & = Z 4+ e;. We have

F(2) = F(Z - &)~ [fi(2; - 1)~ fi())- (B.3)
We also have that

F(3) = F(Z) - /(%)) - fi(Z; + 1)]. (B.4)

g N O N e Ty ™
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Since % is optimal for the case m = m we have
F(7—¢)) 2 F(®) (B.5)
and by the assumptions on the functions f; stated in the problem we have
f5(Z5) = fi(@: + 1) 2 fi(z - 1) = fi(z) (B.6)

since z; > Z;. If we subtract B.4 from B.3 and use the inequalities B.5 and B.6 then we
can show that F(Z) > F(Z). Furthermore one can use B.2 to show that F(£*) £ F(Z). We
therefore have that

F(Z) 2 F(&").

This implies that the solution £ is no better than the solution £ obtained by the algorithm
in the theorem. Since # can be any feasible solution we conclude that the solution obtained
by the algorithm for the case m = 7 + 1 is optimal. Therefore, by induction, the theorem

istrue forall m > 0. m

B.2 Proof of Lemma 3.2

We need to prove that the function, ¢¥ =™t F*(m,), is convex with respect to m,. The
function F7(m:) is the optimal cost of the static problem with two targets and m; weapons.

Let us define

G(m) = ¢M"Fr(m).

Since F, is defined only for integral values of m we need to show that
Gm-1)-2G(m)+ G(m+1)>0

For any fixed value of m > 0 we can write:

F;(m - 1) = Vig™ + Vg™,
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If the number of weapons is increased by one then the additional weapons will be added to

the target with the maximmum marginal return. Let us suppose, for convenience, that
Vipg®™ > Vapg® (B.7)
so that the additional weapon goes to target 1 then
FI(m) = Vig™ ! + Vg™,

If the number of weapons is further increased by 1 then we need to consider 2 cases.
CASE L Vopg®s > Vipg=itl.
: In this case target 2 has the maximum marginal return so that

a Fi(m+1) = Vig™*! 4 Vog™r*.

We can now write

g Gim=1)=G(m) +G(m+1) = M- FE(m = 1) = 2gF;(m) + F(m + 1)]
| @1V (L - ) + Vag™t (g - 1)
! = M ™ [Vipg™ - Vapg™?]

rad I > 0.

The last inequality is a result of the inequality in B.7.
CASE II: Vopg® < Vipg®:tt.

In this case target 1 has the maximum marginal return so that
Fy(m + 1) = Vag™ ¥? 4 Vg™,

| w We can now write

Gim=-1)~Gm)+Gm+1) = ™ YHEF(m~1)-2¢F;(m)+ F;(mm +1)]

o = M Vg™ (¢ - 29 + 1))
o  M-m-lygeg? '
> 0.

Therefore the function G(m) is convex which completes the proof.

s ne pary mury e
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